• Title/Summary/Keyword: core-shell particle

Search Result 120, Processing Time 0.02 seconds

A Development of Nontoxic Composite Latex Using $CaCO_3$/PEMA ($CaCO_3$/Poly ethyl methacrylate를 이용한 무독성 혼합라텍스의 개발)

  • Seul, Soo-Duk;Lee, Sun Ryong;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.133-139
    • /
    • 2002
  • Core-shell polymers of inorganic/organic pair, which are consisted of both core and shell component, were synthesized by sequential emulsion polymerization using ethyl methacrylate (EMA) as a shell monomer and ammonium persulfate as initiator. We found that $CaCO_3$ core should be prepared by adding 2.0wt% SDBS(sodium dodecyl benzene sulfonate), $CaCO_3$ core/PEMA shell polymerization was carried out on the surface of $CaCO_3$ particle during EMA shell polymerization in the core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring the degree on decomposition of $CaCO_3$ by HCI solution, thermal decomposition of polymer composite on thermogravimetric analyzer, glass transition temperature on differential scanning calorimeter, and morphology using scanning electron microscope.

Synthesis and Effect of Plasma Treatment of Acrylic Composite Particle Binder (아크릴계 복합입자 바인더의 제조와 플라즈마 처리영향)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2008
  • Kind of monomer(MMA, EA, BA, St)and the monomer ratio(80/20 to 20/80) where changed in the preparation of the core shell binder, and property was improved the plasma processing. Each material changed by plasma treatment time($1{\sim}10\;s$) to change to measure the tensile strength, contact angle and adhesion peel strength for the core shell binder optimal conditions for handling the output of the surface treatment. The type of polymerization and composition of the binder is a regardless initiator of APS, the reaction temperature of $85^{\circ}C$ to 0.3 wt% of the surfactant used to indicate when the conversion rate was the highest, core shell composite particle binder got two glass temperature curves. Core shell binder after the plasma processing contact angle change is the PEA/PSt 38 percent of cases within five seconds to indicate slight decrease was a decline rapidly if not handled $0^{\circ}$ to reach. Tensile strength PSt/PMMA varies $46.71{\sim}46.27\;kg_f$/2.5 cm and adhesion strength PEA/PMMA varies $7.89{\sim}14.44\;kg_f$/2.5 cm increases. Overall, adhesion strength of core shell composite particle is in the order of order PEA>PBA>PSt for shell monomer MMA.

Effect of Anionic Surfactants in Synthesizing Silicone Dioxide/Styrene Core-Shell Polymer (이산화규소/스티렌의 코어-셀 합성에서 음이온 계면활성제의 영향)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.404-409
    • /
    • 2008
  • The core-shell composite particles of inorganic/organic were polymerized by using styrene(St) as a shell monomer and potassium persulfate (KPS) as an initiator. We studied the effect of core-shell structure of silicone dioxide/styrene in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alky lether sulfate (EU-S133D). We found that when $SiO_2$ core/PSt shell polymerization was prepared on the surface $SiO_2$ particle, to minimize the coagulation during the shell polymerization, the optimum conditions were at concentration of $2.56{\times}10^{-2}mole/L$ SLS. The structure of core-shell polymer was confirmed by measuring the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of core-shell polymer particles by transmission electron microscope (TEM).

Preparation of Alkyl Acrylate and Functional Monomer Multi Core-Shell Composite Particles (알킬 아크릴레이트와 관능성 단량체계 다중 Core-Shell 복합입자의 제조)

  • Choi, Sung-Il;Cho, Dae-Hoon;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA) and shell monomers such as MMA, EMA, 2-hydroxyl ethyl methacrylate (2-HEMA), glycidyl methacrylate (GMA) and methacrylic acid (MAA) in the presence of different concentrations of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, contact angle after plasma treatment, tensile strength and isothermal decomposition kinetics. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(EMA/GMA) shell composite particles was excellent as 98.5%. In the case of the concentration of 0.03 wt% SDBS, the particle size of EMA core-(MMA/GMA) shell composite particles was high as $0.48{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 1~2 points of glass transition temperatures appear for general copolymer particles. Overall, the adhesion strength of shell composite particles was in the order of EMA/MAA > EMA/2-HEMA > EMA/GMA.

Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property (멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성)

  • Lim, Hyung-Mi;Yoon, Joon-Ho;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

Effects of Intra-particle Composition on the Adhesive Properties and Water Dispersity of Water Dispersible Acrylic Emulsion Pressure Sensitive Adhesive (입자 내 조성 변화가 수분산성 아크릴 에멀젼 점착제의 점착 물성과 수분산성에 미치는 영향)

  • Seo, In Seon;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.444-448
    • /
    • 2007
  • The effects of intra-particle composition on the adhesive properties and water dispersity of acrylic emulsion type pressure sensitive adhesives (PSAs) were investigated. In the case of PSA having uniform intra-particle composition, the higher holding strength made the water dispersity lower. By changing the intra-particle composition in hard core/soft shell type, however, it was possible to get PSAs showing both high holding strength and water dispersity. When the weight ratio of MAA/AA is 4/1, high holding strength, but low initial tack and very low water dispersity were observed in both cases of higher contents of (AA+MAA) in core and shell area. When the weight ratio of MAA/AA is 1/4, however, higher water dispersity and lower holding strength were indicated in the case of higher contents of (AA+MAA) in shell area.

Synthesis of Magnetic Polystyrene-Polyimide Core-Shell Microsphere (자성 폴리스티렌-폴리이미드 Core-Shell 마이크로스피어의 합성)

  • Ahn, Byung-Hyun
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.168-173
    • /
    • 2012
  • Polystyrene-polyimide core-shell microsphere was prepared by dispersion polymerization using poly(amic acid) as the stabilizer. Iron oxide was formed at the microsphere by thermal decomposition of iron pentacarbonyl impregnated in the microsphere. The magnetic polystyrene-polyimide microsphere was monodisperse and the size was about 500 nm. The magnetic polystyrene-polyimide microsphere had 40% of iron oxide, which was identified as $Fe_3O_4$ by X-ray diffraction.

Preparation of Polystyrene-Polyetherimide Core-Shell Particles by Dispersion Polymerization (분산중합에 의한 폴리스티렌-폴리에테르이미드 코어-셀 입자의 합성)

  • Ahn, Byung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.526-530
    • /
    • 2014
  • Polystyrene-poly(etheramic acid) core-shell particles were prepared by dispersion polymerization of styrene using poly(etheramic acid) obtained by the reaction of 2,2'-bis[4-(3,4-dicarboxyphenoxy) phenyl]propane dianhydride and 3,5-diamniobenzoic acid as a stabilizer. 4-Vinylbenzyltrimethylammonium chloride was used as a comonomer to increase the binding efficiency of poly(etheramic acid). When the ethanol-water mixture (7 : 3) was used as a reaction medium, particles were stabilized well and the size distribution of particles was fairly narrow. The particle size increased with the amount of styrene. The particles polymerized in the dimethylformamide-water mixture had a broad size range. Polystyrene-poly(etheramic acid) core-shell particles were transformed to polystyrene-polyetherimide core-shell particles by the chemical imidization of shells.

Preparation and Reconstitution of Core-shell Type Nanoparticles of Poly(ε -caprolactone)/Poly(ethyleneglycol)/Poly(ε -caprolactone) Triblock Copolymers

  • Jeong, Young-Il;Ryu, Jae-Gon;Kim, Young-Hoon;Kim, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.872-879
    • /
    • 2002
  • One of the improtant characteristics of core-shell type nanoparticles is the long-term storage and reuse as an aqueous injection solution when required. For this reason, reconstruction of lyophilized core-shell type nanoparticles is considered to be essential . BAB type triblock copolymers differ from AB type diblock copolymers, which contain the A block as a hydrophilic part and the B block as a hydrophobic part. by not being easily redistributed into phosphate-buffered saline (PBS, pH 7.4, 0.1 M). Therefore, lyophilized core-shell type nanoparticles of CEC triblock copolymer were reconstituted using a somication process with a bar-type sonicator in combination with a freezing-thawing process. Soncation for 30s only resuspended CEC nanoparticles in PBS; their particle size distribution showed a monomodal pattern with narrow size distribution. The bimodal size distribution pattern and the aggregates were reduced by further sonication for 120 s but these nanoparticles showed a wide size distribution. The initial burst of drug release was increased by reconstitution process. The reconstitution of CEC core-shell type nanoparticles by freezing-thawing resulted in trimodal distribution pattern and formed aggregates, although freezing-thawing process was easier than sonication . Drug release form CEC nanoparticles prepared by freezing-thawing was slower than from the original dialysis solution. Although core-shell typenanoparticles of CEC triblock copolymers were not easily performed. Cytotoxicity testing of core-shell type nanoparticles of CEC-2 triblock copolymers containing clonazepam (CNZ) was performed using L929 cells. Cytotoxicity of CNZ was decreased by incorporation into nanoparticles.

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.298-302
    • /
    • 2012
  • Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.