• Title/Summary/Keyword: core yarn

Search Result 47, Processing Time 0.015 seconds

신축성사 개발 및 물성평가 : 코어(core)사와 장식(effect)사간의 동색성 및 염색성 평가 (Preparation and Characterization of Stretch Fabric : Dyeing Properties of Core Yarn and Effect Yarn)

  • 강기혁;김영성;손영아
    • 한국염색가공학회지
    • /
    • 제22권2호
    • /
    • pp.140-144
    • /
    • 2010
  • In this study, we investigated the clean appearance and good stretch properties. Usually, clean appearance concerned with the dyeing properties of core and effect yarns. The dyeing properties between core yarn (conjugate yarn) and effect yarn were determined by the build-up and the color differences using the four different yarns of SDY FD(spindraw yarn full dull), SDY CD(spindraw yarn cation dyeable), POY FD( partially-oriented yarn full dull) and POY CD(partially-oriented yarn cation dyeable). We used the single color dye of C. I. Disperse Blue 79 and mixed colors made by C. I. Disperse Red 60, C. I. Disperse Blue 56, and C. I. Disperse Yellow 54.

차양막 직물용 코팅사 제조기술에 관한 연구 (Study on Manufacturing Technology of Coating Yarns for Awning Fabrics)

  • 김승진;이은호;허경;김현아
    • 한국염색가공학회지
    • /
    • 제27권1호
    • /
    • pp.35-49
    • /
    • 2015
  • This paper investigated optimum process conditions of coating yarn for awning fabric. For this purpose, the simulation for processability and yarn quality using SPSS statistics package was carried out, and PP/TPO and PET/PVC coating yarns specimens were made with variation of extruder temperature and feed speed of core yarn on the yarn coating machine for examining simulation result. It was revealed that optimum coating conditions of PP/TPO 1000d coating yarn were extruder temperature $150^{\circ}C$, and core yarn feed speed 400~500m/min. Mechanical property and thermal shrinkage of PP/TPO coating yarn made at this conditions were best and core evenness rates of these coating yarns by yarn compression tester were also superior, which was certified by SEM photograph. In addition, these experimental results were coincided with simulation results. It was found that, in PET/PVC coating yarn, yarn physical properties between 1500d and 1200d coated yarns were not shown any difference, and core evenness rates of these coating yarns were superior. It revealed and concluded that these simulated coating conditions are applicable to production field.

한지사 혼용 직물의 접착심 접착 후 외관 형성능의 변화 (The Changes of Appearance Formability of Hanji Blended Fabrics after Fusing)

  • 지주원
    • Human Ecology Research
    • /
    • 제59권1호
    • /
    • pp.13-21
    • /
    • 2021
  • In order to examine the changes in the appearance properties and the post-adhesion appearance properties of Hanji yarn blended fabrics : 100% Hanji yarn fabric, two kinds of cotton / Hanji yarn blended fabrics and 100% cotton fabric, were selected and fused with three kinds of interlinings. After fusing, changes of standardized KES values were examined. 1. W/T, B/W of Hanji yarn blended fabrics was higher than that cotton fabric. WC/W, 2HB/W, 2HB/B, and 2HG/G values of Hanji yarn blended fabrics are lower than cotton fabric. This means that the Hanji yarn was mixed, shape retention, wrinkle recovery was improved, and the drape property was lowered. 2. After fusing, W/T, shape retention, wrinkle recovery of Hanji yarn blended fabrics increased, and WC/W values of Hanji yarn blended fabrics decreased. The wrinkle recovery property of Hanji yarn blended fabrics were improved; however, the 2HG/G value of Hanji yarn fabric increased due to fusing, and the wrinkle recovery property of Hanji yarn fabric decreased. 3. In the selection of adhesive core, I1 adhesive core is excellent in terms of shape stability and wrinkle recovery; however, an I3 adhesive core is recommended for drape and silhouette formation. When the fabric of the adhesive core was PET, it was found to penetrate better between the fabrics during adhesion than the case of cotton fabrics.

한복지의 역학적특성에 관한 연구 (제3보) 코어방적계 한복지 (A Study on the Mechanical Properties of Fabrics for Korean Folk Clothes (Part 3) On the core-spun yarn woven fabrics)

  • 성수광;권오경
    • 한국의류학회지
    • /
    • 제13권1호
    • /
    • pp.79-87
    • /
    • 1989
  • In the part 1 and 2, relations were found between fundmental mechanical properties and primary hand values, performance of Korean women's summer and fall & winter fabrics. In this paper, in order to investigate the hand values and mechanical properties such as tensile, shearing, bending, compression, surface and thickness & weight of the core-spun yarn woven fabrics for Korean folk clothes were measured by KES-F system. The experimental results are statistically analyzed in the aspects of the mechanical properties, their effects on the hand values, formation of weared clothes and transformation behavior. The correlation in the hand values are analyzed, too. Furthermore, there mechanical properties are discussed in comparison with those values for kimono fabrics. The main results are summarized as follows: 1. The core-spun yarn woven fabrics for Korean folk clothes have box-shaped silhouette based on higher bending rigidity and shear elasticity. 2. The core-spun yarn woven fabrics for Korean folk clothes are inferior to silk fabrics, superior to polyester fabrics in formation. 3. A drapability and wrinkle recovery of core-spun yarn woven fabrics for Korean folk clothes formation for weared clothes are inferior to polyester fabrics, superior to silk fabrics. 4. A primary factor of mechanical properties contribute to the hand values of core-spun yarn woven fabrics for Korean folk clothes are same as the Korean women's winter fabrics, except for flexibility with soft feeling. 5. As for the hand values of core-spun yarn woven fabrics for Korean folk clothes, stiffness, anti-drape stiffness are superior to those of polyester fabrics. And also, flexibility with soft feeling, scrooping feeling of core-spun yarn woven fabrics have greater values as compared with silk fabrics for Korean folk clothes.

  • PDF

에스터계 열가소성 탄성 섬유의 커버링 공정 및 열처리 조건에 따른 물성 변화 (Physical Properties According to the Covering Process and Heat Treatment Condition of the Thermoplastic Polyetherester Elastomeric Fibers)

  • 김진오;김영수;박성우
    • 한국염색가공학회지
    • /
    • 제33권3호
    • /
    • pp.120-130
    • /
    • 2021
  • The condition of covering process using thermoplastic polyetherester elastomeric fibers(TPEE) was established. Two types of core yarn(TPEE, Spandex) and one type of effect yarn(PET) were used as materials to confirm the change in physical properties of covering yarn under various covering conditions. In addition, the effects of the treatment temperature on the elongation at break of covering yarn after heat treatment was analyzed. Through this analysis, it was confirmed that the elastic recovery of TPEE which is used as the core yarn was increased with the draw ratio, but decreases when it exceeds 1:2.5. And the elongation at break of the covering yarn could be increased by increasing the twist per meter of it. Additionally, it was confirmed that the elastic recovery of TPEE which is used as a core yarn, could be increased by applying heat treatment.

PET, Tencel, Cotton MVS 혼방사의 섬도와 혼용률에 따른 물성 특성 (Physical Properties of Polyester, Tencel and Cotton MVS Blended Yarns with Yarn counts and Blend Ratio)

  • 사아나;이정순
    • 한국의류산업학회지
    • /
    • 제17권2호
    • /
    • pp.287-294
    • /
    • 2015
  • This study investigates the physical properties of Murata Vortex Spinning (MVS) blended yarn with yarn count(20's, 30's, 40's) and blend ratio(Polyester 100, Polyester70:Cotton30, Polyester50:Cotton50, Polyester30:Cotton70, and Polyester50:Tencel40:Cotton10). This study evaluated tenacity, elongation, bending rigidity, bending hysteresis, hairiness coefficient, irregularity and twist number. The structure of MVS blended yarn influenced stress, strain, bending rigidity, bending hysteresis and the hairiness coefficient of MVS blended yarn decreased as the yarn count increased. MVS blended yarn consists of core and sheath. The core of MVS blended yarn is composed of a parallel fiber with a wrapping fiber that covers thecore fiber. This special structure of the MVS blended yarn effects the physical properties of the yarn; in addition, the mechanical properties of the component fibers influenced the stress, strain, bending rigidity, bending hysteresis and hairiness coefficient of MVS blended yarn with the blend ratio. Polyester decreases and cotton increases resulted in decreased physical properties. A similar polyester content increased the tencel and physical properties. Appropriate physical properties and a variety of touch expression can be realized through a correct blend ratio.

저온융착 폴리에스테르사 함유 팬시사 직물의 열처리 특성 및 염색성 (Heat Processing and Dyeing Properties of Fabrics by Using Composite Fancy Yarn Containing Low Melting PET Yarn)

  • 성우경
    • 한국의류산업학회지
    • /
    • 제14권6호
    • /
    • pp.1024-1031
    • /
    • 2012
  • The thermal bonding PET fabrics were produced through high temperature steaming (HTS) of low melting PET yarn as warp and composite fancy yarn containing low melting PET yarn as weft. The low melting PET yarn of sheath-core structure consisted of a regular PET in core portion and low melting PET in sheath portion. The composite fancy yarn consisted of regular PET yarn as inner part and effect part and low melting PET yarn as binding part. This study was carried out to investigate the melting behavior of thermal bonded PET fabric, the effect of HTS on the thermal bonding, mechanical properties, and dyeing properties. The melting peak of low melting PET yarn showed two melting peaks caused by sheath-core structure. Almost the entire thermal bonding of the fancy PET fabrics containing low melting PET yarn has formed at $200^{\circ}C{\times}3min$ of HTS. The tensile strength in warp and weft direction of the fancy PET fabrics slightly decreased as temperature of HTS increased. The total K/S value of the fancy PET fabrics decreased slightly to $180^{\circ}C{\times}3min$ of HTS, while increased slightly above $200^{\circ}C{\times}3min$ of HTS. The changes in the hue angle ($H^{\circ}$) of the thermal bonded fancy PET fabrics dyed with disperse dyes hardly ever happened.

PVC 대체를 위한 열가소성 폴리에스테르 탄성중합체 코팅사 연구(1) (Study on Thermoplastic Polyester Elastomer Coated Yarn for Replacing PVC Coated Yarn(1))

  • 서영호;박시우;송명진;황혜진;오태환
    • 한국염색가공학회지
    • /
    • 제35권3호
    • /
    • pp.137-150
    • /
    • 2023
  • This paper investigated the applicability of polyester yarn coating using ther- moplastic polyester elastomer (TPEE) to replace polyvinyl chloride (PVC) coated yarn for blinds fabric. For this purpose, suitable TPEE for yarn coating was selected by measuring thermal and rheological properties and the yarn coating process conditions were investigated by changing variables such as extrusion temperature, die and nipple dimensions, take-up speed, and core yarn denier. TPEE coated yarns with a diameter of 0.3 and 0.4 mm were prepared, respectively. Tensile properties and cross-section uniformity revealed by a scanning electron microscopy (SEM) of the TPEE coated yarn were analyzed. Among several candidates, TPEE having a melt index of 35 and melting temperature of 153℃ was the most suitable for replacing PVC, and the opti- mum coating conditions for the TPEE coating yarn were a head temperature of 170℃ and core yarn denier of 420 denier. The selected TPEE coated yarns have enough ten- sile strength and uniformity to replace present PVC coated yarns, certified by SEM photograph.

고감성 PTT/Tencel/Cotton MVS 혼방사 패션소재의 물성에 관한 연구 (I) - 사 구조에 따른 혼방사 물성 - (Study on the Physical Property of PTT/Tencel/Cotton MVS Blended Yarn for High Emotional Garment (I) - Physical property of blended yarn according to yarn structure -)

  • 김현아
    • 한국의류산업학회지
    • /
    • 제18권1호
    • /
    • pp.113-119
    • /
    • 2016
  • The evolution of spinning technology was focused on improving productivity with good quality of yarns. More detail spinning technology according to mixing of various kinds of fibre materials on the air vortex spinning system is required for obtaining good quality yarns. This paper investigated the physical properties of air vortex yarns compared with ring and compact yarns using PTT/tencel/cotton fibres. It was observed that unevenness of air vortex yarns was higher than those of ring and compact yarns, which resulted in low tenacity and breaking strain of air vortex yarns. Initial modulus of air vortex yarns was higher than those of ring and compact yarns. Yarn imperfections of air vortex yarns such as thin, thick and nep were much more than those of ring and compact yarns. These poor yarn qualities of air vortex yarn were attributed to the fasciated yarn structure with parallel fibres in the core part of the air vortex yarn. However, yarn hairiness of air vortex yarns was less and shorter than those of ring and compact yarns. Thermal shrinkage of air vortex yarns were higher than that of ring yarns, which was caused by sensible thermal shrinkage of PTT fibres on the bulky yarn surface and core part of air vortex yarns.

PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향 (Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment)

  • 김현아;손황;김승진
    • 한국의류산업학회지
    • /
    • 제17권3호
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.