• Title/Summary/Keyword: core resistivity

Search Result 108, Processing Time 0.644 seconds

Resistivity Imaging Using Borehole Electrical Resistivity Tomography: A Case of Land Subsidence in Karst Area Due to the Excessive Groundwater Withdrawal (시추공 전기비저항 토모그래피를 이용한 비저항 영상화: 과잉취수에 의한 석회암 지반침하 지역 사례)

  • Song, Sung-Ho;Lee, Gyu-Sang;Um, Jae-Youn;Suh, Jung-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.537-547
    • /
    • 2011
  • Electrical resistivity tomography surveys using boreholes were applied to reveal the cause of a catastrophic land subsidence accompanied by the excessive groundwater withdrawal in urban karst area and to map the connectivity of disseminated cavities over the study area. In order to understand the hydrogeological characteristics, resistivity using exsitu core samples, groundwater level for five boreholes, and hydraulic conductivity using slug test were measured. The hydraulic conductivity variation ranging from 0.8 to $9.3{\times}10^{-4}\;cm/s$ for five boreholes and a gentle slope of groundwater level indicated that there is no significant characteristics of hydraulic heterogeneity. Core samples of the lime-silicated rock were classified as three groups including cracked, weathered, and fresh and measured the resistivity values ranged from 103 to 161, 218 to 277, and 597 to 662 ohm-m, respectively. Drilling results that showed the cavity filled with clay materials and tomogram for this region indicated resistivity value lower than 50 ohm-m. From the inverted resistivity results for each section with five boreholes, cavity and fractured layer were distributed along the depth between 10 and 20 m overall area and cavities ranging from 4 to 6 m filled with clay materials.

Electrical Resistivity of Cylindrical Cement Core with Successive Substitution by Electrolyte of Different Conductivity (전도성이 다른 공극수로 순차 치환한 시멘트 시험편의 전기비저항)

  • Lee, Sang-Kyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.328-337
    • /
    • 2009
  • To investigate the relation between pore fluid conductivity and bulk resistivity of a rock sample it is assumed that electrolyte solution perfectly substitute the pore fluid that occupied the pore space within the sample in general. In this study, it is investigated that how much can the electrolyte solution substitute the pore fluid by repeating the same saturation process. Four kinds of NaCl solutions of 8, 160, 3200, 64000 ${\mu}S$/cm are used. The saturation process has repeated four times for each electrolyte in increasing conductivity order first then four times each in decreasing order. The more the saturation process repeated with the same electrolyte, the more electrolyte solution substitute the pore fluid. Geometric mean of bulk resistivity in increasing and decreasing orders with the same electrolyte solution is assumed to be mostly close to the bulk resistivity with perfect substitution. Bulk resistivity measurements for both increasing and decreasing order differs within 10% to the geometric mean when repeating the saturation process 4 times while maximum 40% difference is observed when single saturation process for each electrolyte solution with increasing order. The modified parallel resistant model can generally represent the relations between pore fluid resistivity and bulk resistivity in the experiment, but more experimental data with various rock samples with different porosity is needed to generalize the model.

Discontinuity Analysis Using Well Log Methods from a Borehole-PABH1 in the Pungam Sedimentary Basin (풍암퇴적분지 내 시추공 PABH1에서 불연속면에 대한 물리검층방법의 적용)

  • 김영화;장승익;김중열;현혜자
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.261-273
    • /
    • 1998
  • Multiple well log analysis technique consisting of geophysical well log and geological core log has been made to analysis the discontinuities of a test borehole-PABH1 located in Pungam sedimentary basin, Sosok, Hongchon-gun, Kangwon Province. Well log methods consist of normal resistivity log, focussed log, single point resistance log, SP log, gamma log, natural gamma log as well as acoustic televiewer log and borehole television log. Core scanning technique was used as an aid for geological core log. The analysis was made by comparing firstly the televiewer and core discontinuities, and then the results from conventional geophysical log analysis were compared to those from core log and acoustic televiewer log. Fractures deduced from the acoustic televiewer log coincide well with discontinuities shown on the core and conventional geophysical logs. Particularly close coincidence could be observed between fractures derived from acoustic televiewer and conventional geophysical log analysis. It has been noted that the geophysical logs such as, caliper, resistivity, density and high resolution gamma gamma curves are effective in delineating the fractures. For example the ratio between density and resistivity (BRD/SHN) provides also an alternative indicator for discerning the fracture condition in the study area.

  • PDF

Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography

  • Suzuki Koichi;Nakata Eiji;Minami Masayuki;Hibino Etsuhisa;Tani Tomonori;Sakakibara Jyunichi;Yamada Naouki
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • The objective of this study is to estimate the distribution of a zone disturbed by excavation (EDZ) around tunnels that have been excavated at about 500 m depth in pre-Tertiary hard sedimentary rock. One of the most important tasks is to evaluate changes in the dynamic stability and permeability of the rock around the tunnels, by investigating the properties of the rock after the excavation. We performed resistivity and acoustic tomography using two boreholes, 5 m in length, drilled horizontally from the wall of a tunnel in pre-Tertiary hard conglomerate. By these methods, we detected a low-resistivity and low-velocity zone 1 m in thickness around the wall of the tunnel. The resulting profiles were verified by permeability and evaporation tests performed at the same boreholes. This anomalous zone matched a high-permeability zone caused by open fractures. Next, we performed resistivity monitoring along annular survey lines in a tunnel excavated in pre-Tertiary hard shale by a tunnel-boring machine (TBM). We detected anomalous zones in 2D resistivity profiles surrounding the tunnel. A low-resistivity zone 1 m in thickness was detected around the tunnel when one year had passed after the excavation. However, two years later, the resistivity around the tunnel had increased in a portion, about 30 cm in thickness, of this zone. To investigate this change, we studied the relationship between groundwater flow from the surroundings and evaporation from the wall around the tunnel. These features were verified by the relationship between the resistivity and porosity of rocks obtained by laboratory tests on core samples. Furthermore, the profiles matched well with highly permeable zones detected by permeability and evaporation tests at a horizontal borehole drilled near the survey line. We conclude that the anomalous zones in these profiles indicate the EDZ around the tunnel.

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

Industry-University-Research Collaborative Geoscientific Study in Pocheon Area for Groundwater Survey, Part III : Resistivity Technology (포천지역 지하수기초조사 산학연 공동탐사 사례연구(III): 전기탐사기술)

  • You, Young-June;Kim, Jong-Nam;Yoo, In-Kol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.129-136
    • /
    • 2005
  • The groundwater survey was carried out by electrical resistivity and resistivity tomography using several kinds of electrode array to delineate the depth of the saturated zone and basement complex, the aquifer system of fractured rock, and the 2-D resistivity structure was obtained by inversion technique. And the hole-to-surface and crosshole tomography were applied for two boreholes and the inverted resistivity tomogram are obtained. The comparison of those data with core logging data was performed and those results were relatively well correlated. And it was possible to find out the configuration of basement and the fracture zone and the aquifer system from the 2-D resistivity structure and resistivity tomogram.

  • PDF

Electrical Resistivity Survey for Evaluation of Grouting Effect in Earth Dam (그라우팅에 의한 댐체의 보강효과 평가를 위한 전기비저항탐사)

  • Im, Eun-Sang;Oh, Seok-Hoon;Kim, Young-Kyung;Oh, Byung-Hyun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.455-462
    • /
    • 2006
  • In this paper, we used the electrical resistivity survey as a simple and reasonable technique to evaluate the effectiveness of grouting. And, a mechanism was also analyzed to understand how the electrical resistivity is affected by the loss of fine material in the core of a dam. From this mechanism, it was confirmed that electrical resistivity value of the damage section may be up or down depending on the survey conditions. This result seems to be contrary to the previous study that electrical resistivity of the damage zone become alway low. To clarify what was investigated, the electrical resistivity before and after grouting was compared and analyzed. As the result, it was concluded that grouting effectiveness was successfully assessed by electrical resistivity survey.

  • PDF

Geometric Characteristics of Southern Yangsan Fault Zone by Means of Geophysical Prospecting and Geological Survey (지구물리탐사와 지질조사에 의한 양산단층대 남부구간의 기하학적 특성)

  • Lee, Hyoun-Jae;Hamm, Se-Yeong;Park, Samgyu;Ryoo, Chung-Ryul
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2017
  • To date, several studies have been carried out to partially compare and analyze the resistivity values within the Yangsan fault zone through the electrical resistivity survey of the exposed fault zone. However, it is not easy to directly observe a large scaled fault like Yangsan fault that has been weathered, especially due to the weathering of the fault core. This study aimed to reveal the characteristics of location, geometry, the fault core zone as well as underground distribution of the associated fault damage zone, based on the results of electrical resistivity and micro-topographic surveys as well as field geology survey in the southern Yangsan fault zone (Eonyang area). The resistivity anomaly zones developed in the NNE to NE direction were confirmed by the electrical resistivity survey. According to the electrical resistivity, micro-topographic, and field geologic surveys, the Yangsan fault has been formed by three to five fault cores, fault damage zones and/or fractured zones.

Application of Gold Exploration Using Three-dimensional Resistivity Inversion in Sambo mine (3차원 전기비저항 역산 방법을 이용한 삼보 광산에서 금광 탐사)

  • Park Jong-Oh;Kim Hee-Joon;Song Moo-Young;You Young-June
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • The Sambo mine is located in Hae-je Myeon, Moo-an Gun, Chollanamdo, which consists of host gneiss and rhyolite possessing quartzite veins with other compositions such as gold, silver, and sublimated sulfur. The ore grade estimated from the core was 0.05~10.9g/t or less in gold and 0.05~389g/t or less in silver, indicating a partial mineralization. The purpose of this paper is to understand the subsurface structures and the distribution of mineralized bodies in the Sambo mine using a combined method of Schlumberger, Wenner, and Dipole-di-pole resistivity surveys on the surface and the resistivity tomography survey in boreholes. The result of three-dimensional resistivity inversion showed that the mineralized body is extended to 240m long in the N10°~20°E direction, with 30m wide and 80 m thick from the surface. The low resistivity zones (<1,000ohm-m) determined from the resistivity image were in good agreement with the mineralized bodies and weak zones identified from the logged cores.

Impedance investigation of the surface film formed on aluminum alloy exposed to nuclear reactor emergency core coolant

  • Junlin Huang;Derek Lister;Xiaoliang Zhu;Shunsuke Uchida;Qinglan Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1518-1527
    • /
    • 2023
  • A method was proposed for in-situ evaluating the thickness and resistivity of the oxide/hydroxide film formed on the surface of aluminum alloy exposed to sump water formed in the containment after a loss-of-coolant accident. The evaluation entailed fitting a model for the film impedance, which has film thickness and other variables describing the resistivity profile of the film along its thickness direction as fitting parameters, to the practically measured electrochemical impedance data. The obtained resistivity profiles implied that the films formed at pHs25℃ 7, 8, 9, 10, and 11 all had a duplex structure; compared to the outer layer in contact with the solution, the inner layer of the film had a much higher resistivity and was inferred to be denser and provide most of the protectiveness of the film. Both the thickness and the total resistance of the film decreased with the increasing solution pH25℃, suggesting that the films formed in more alkaline solutions had less protectiveness against corrosion, consistent with the increasing aluminum alloy corrosion rates previously identified.