• Title/Summary/Keyword: core protein

Search Result 335, Processing Time 0.032 seconds

First Korean case of factor V Leiden mutation in pregnant woman with a history of recurrent pregnancy loss

  • Han, Sung Hee;Seo, Jung Jae;Kim, Eun Seol;Ryu, Jae Song;Hong, Seong Hyeon;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • v.16 no.1
    • /
    • pp.23-26
    • /
    • 2019
  • Thrombophilia refers to inherited or acquired hemostatic disorders that result in a predisposition to blood clot formation. When combined with the hypercoagulable state that is characteristic of pregnancy, there is an increased risk of severe and recurrent pregnancy complications. Activated protein C resistance caused by factor V Leiden (FVL) mutation is known to be the most common cause of inherited thrombophilia in Caucasian population. FVL mutation has been related to pregnancy complications associated with hypercoagulation, e.g. miscarriage, intrauterine fetal demise, placental abruption, and intrauterine growth retardation. Although the FVL mutation is easily detected using molecular DNA techniques, patients who are heterozygous for this disorder often remain asymptomatic until they develop a concurrent prothrombotic condition. Because there are potentially serious effects of FVL mutation for pregnancy, and because effective treatment strategies exist, early detection and treatment of this condition might be considered.

Production of Hepatitis B Core Antigen in a Stirred Tank Bioreactor: The Influence of Temperature and Agitation

  • Tey, Beng Ti;Chua, Mung Ing;Chua, Ghee Sung;Ng, Michelle Yeen Tan;Biak, Dayang Radiah Awang;Tan, Wen Siang;Ling, Tau Chuan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.164-167
    • /
    • 2006
  • The influence of temperature and agitation on the growth of Escherichia coli expressing hepatitis B core antigen (HBcAg) in stirred tank bioreactor were investigated. The highest specific growth rate for E. coli$(0.844 h^{-1})$ was achieved at a temperature of $37^{\circ}C$ and an agitation speed of 250 rpm. The activation energy for the growth of the E. coli strain W3110lQ in the stirred tank bioreactor was estimated to be 11 kcal/mol. The highest protein yield was achieved at a temperature of $44^{\circ}C$ and an agitation speed of 250 rpm. The relative protein concentration at $44^{\circ}C$ is 30 and 6% higher compared to that at 30 and $37^{\circ}C$, respectively.

Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Bae, Eun-Kyung;Cho, Young-Hee;Park, Ji-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.673-679
    • /
    • 2004
  • A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.

Biochemical Studies on the Sugar Chain Structure of Glycoproteins with the Same Protein Core of Bovine Milk Fat Globule Membrane (공통의 1차 구조를 가진 우유 지방구막 구성단백질의 당쇄 구조에 관한 생화학적 연구)

  • Seok, Jin-Seok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.138-147
    • /
    • 2003
  • We here analyzed and proposed the structures of the N-linked sugar chains of PAS-7 from bovine milk fat globule membrane. The N-linked sugar chains were liberated from PAS-7 by hydrazinolysis and, after modifying the reducing ends with 2-aminopyridine (PA), were separated into one neutral (7N,55%) and two acidic (7M mono-, 43%; 7D, di-, 2%) sugar chain roups. The latter were converted into neutral groups (7MN and 7DN) by sialidase digestion. The structure of each of these PA-neutral sugar chains was determined by sugar analysis, sequential exoglycosidase digestion, partial acetolysis, and 1H-NMR spectroscopy. The results show that the 10 sugar chains were of the biantennary complex type with and without fucose. The structure of 7N2A one of the major sugar chains, was proposed as; [structure: see text] A structural comparison between PAS-6 and -7 indicated that although they shared the same protein core, their sugar moiety was markedly different, involving the existence of a different pathway during the post-transcriptional modification.

  • PDF

Detection of infectious hypodermal and hematopoietic necrosis virus and white spot syndrome virus in whiteleg shrimp (Penaeus vannamei) imported from Vietnam to South Korea

  • Park, Seul Chan;Choi, Seong-Kyoon;Han, Se-Hyeon;Park, Song;Jeon, Hye Jin;Lee, Seung Chan;Kim, Kyeong Yeon;Lee, Young Seo;Kim, Ji Hyung;Han, Jee Eun
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.31.1-31.5
    • /
    • 2020
  • In this study, whiteleg shrimp (Penaeus vannamei) imported from Vietnam were collected from South Korean markets, and examined for 2 viruses: infectious hypodermal and hematopoietic necrosis virus (IHHNV, recently classified as decapod penstyldensovirus-1), and white spot syndrome virus (WSSV). Among 58 samples, we detected IHHNV in 23 samples and WSSV in 2 samples, using polymerase chain reaction and sequencing analyses. This is the first report of IHHNV and WSSV detection in imported shrimp, suggesting that greater awareness and stricter quarantine policies regarding viruses infecting shrimp imported to South Korea are required.

Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts

  • Seung-hyun Kwon;Hyunju Chung;Jung-Woo Seo;Hak Su Kim
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.143-148
    • /
    • 2024
  • Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybean-derived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis.

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

Effects of Light on Disassembly of Chloroplast during Senescence of Detached Leaves in Phaseolus vulgaris

  • Lee Dong-Hee;Hong Jung-Hee;Kim Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.69-80
    • /
    • 1997
  • Effects of light on leaf senescence of Phaseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves which had been kept in the dark or under light. The loss of chlorophyll accompanied by degradation of chlorophyll-protein complexes. PSI (photosystem I) complex containing LHCI (light harvesting complex of PSI) apoproteins was rapidly decreased after the early stage of dark-induced senescence. RC(reaction center)-Core3 was slightly increased until 4 d and slowly decreased thereafter. As disassembly of LHCII trimer progressed after the late stage of senescence, there was a steady increase in the relative amount of SC(small complex)-2 containing LHCII monomer. On the other hand, white and red light adaptation caused the structural stability of chlorophyll-protein complexes during dark-induced senescence. Particularly, red light was more effective in the retardation of LHCII breakdown than white light, whereas white light was slightly effect in protecting the disassembly of PSI complex compared to red light. These results suggest, therefore, that light may be a regulatory factor for stability of chlorophyll-protein complexes in the senescent leaves.

  • PDF

Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.5.1-5.13
    • /
    • 2023
  • Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.

Proteomic analysis of Korean ginseng(Panax ginseng C. A. Meyer) following exposure to salt stress

  • Kim, Sun-Tae;Bae, Dong-Won;Lee, Kyung-Hee;Hwang, Jung-Eun;Bang, Kyong-Hwan;Kim, Young-Chang;Kim, Ok-Tae;Yoo, Nam-Hee;Kang, Kyu-Young;Hyun, Dong-Yun;Lim, Chae-Oh
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • We evaluated the response to salt stress of two different ginseng lines, STG3134 and STG3159, which are sensitive and tolerant, respectively, to salt treatment. Plants were exposed to a 5 dS/m salt solution, and chlorophyll fluorescence was measured. STG3134 ginseng was more sensitive than STG3159 to salt stress. To characterize the cellular response to salt stress in the two different lines, changes in protein expression were investigated using a proteomic approach. Total protein was extracted from detached salt-treated leaves of STG3134 and STG3159 ginseng, and then separated by two-dimensional polyacrylamide gel electrophoresis(2-DE). Approximately 468 protein spots were detected by 2-DE and Coommassie brilliant blue staining. Twenty-two proteins were found to be reproducibly up- or down-regulated in response to salt stress. Among these proteins, twelve were identified using MALDI-TOF MS and ESI-Q-TOF and classified into several functional groups: photosynthesis-related proteins(oxygen-evolving enhancer proteins 1 and 2, rubisco and rubisco activase), detoxification proteins(polyphenol oxidase) and defense proteins($\beta$-1,3-glucanase, ribonuclease-like storage protein, and isoflavone reductase-like protein). The protein levels of ribonuclease-like storage protein, which was highly induced in STG3159 ginseng as compared to STG3134, correlated tightly with mRNA transcript levels, as assessed by reverse-transcription(RT)-PCR. Our results indicate that salinity induces changes in the expression levels of specific proteins in the leaves of ginseng plants. These changes may, in turn, playa role in plant adaptation to saline conditions.