• Title/Summary/Keyword: core power distribution

Search Result 297, Processing Time 0.022 seconds

A cultural and gender analysis of Compulsive Buying Behavior's core dimensions

  • LEE, Jaemin
    • The Journal of Economics, Marketing and Management
    • /
    • v.7 no.3
    • /
    • pp.29-43
    • /
    • 2019
  • Research Purpose - The purpose of this study was to investigate marketing stimulation and impulsive buying of Internet shopping mall. Research Question - Despite these unstable factors, the Internet shopping mall market has become more popular than traditional distribution channels such as department stores and discount stores due to the increase in the number of Internet users, a gradual increase in the consumption of high-priced items. Research Method - The data were collected from 301 women living in Seoul, Gyeonggi, Gwangju, Daegu, and Gyeongnam province in Korea on May 2018. Statistical methods used in the study were frequency, F-test, Duncan test, factor analysis, Cronbach's α, correlation coefficient, and multiple regression. Result - All The reliability of these questions is Cronbach's α =. 775. Factor 5, which is 12.367 % explanatory power, is said to consist of three questions: price, discount bag, and no-carrying; thus, the reliability of the question is Cronbachs' α. The ratio of the five factors in body random cases was 66.096 %, and the reliability of the questions was higher than. 770 as a result of the reliability analysis.

A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates

  • Benbakhti, Abdeldjalil;Bouiadjra, Mohamed Bachir;Retiel, Noureddine;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.975-999
    • /
    • 2016
  • This work investigates a thermomechanical bending analysis of functionally graded sandwich plates by proposing a novel quasi-3D type higher order shear deformation theory (HSDT). The mathematical model introduces only 5 variables as the first order shear deformation theory (FSDT). Unlike the conventional HSDT, the present one presents a novel displacement field which includes undetermined integral variables. The mechanical properties of functionally graded layers of the plate are supposed to change in the thickness direction according to a power law distribution. The core layer is still homogeneous and made of an isotropic ceramic material. The governing equations for the thermomechanical bending investigation are obtained through the principle of virtual work and solved via Navier-type method. Interesting results are determined and compared with quasi-3D and 2D HSDTs. The influences of functionally graded material (FGM) layer thickness, power law index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are discussed.

Homogenization of KMRR Hafnium Control Assembly for 3-D Diffusion Calculation (3차원 중성자 확산계산을 위한 KMRR Hafnium 조정집합체 균질화에 대한 연구)

  • Park, Hang-Bok;Kim, Young-Jin;Kim, Hark-Rho;Lee, Ji-Bok
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.233-240
    • /
    • 1988
  • The hafnium shroud is used to control the excess reactivity and power distribution in KMRR. The core analysis is performed by the diffusion code VENTURE using the 5 group macroscopic cross sections homogenized for an assembly. Investigated are the applicability of the diffusion calculation by homogenized cross sections to the analysis of control assembly which features unusual geometry such that hafnium shroud surrounds a multiplying medium inside. Comparative calculation is performed for the excess reactivity and power levels by the transport code TWOTRAN. The results show the acceptability of the diffusion calculation by the homogenized cross sections without significant error.

  • PDF

A simple analytical approach for thermal buckling of thick functionally graded sandwich plates

  • El-Haina, Fouzia;Bakora, Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.585-595
    • /
    • 2017
  • This study aimed to presents a simple analytical approach to investigate the thermal buckling behavior of thick functionally graded sandwich by employing both the sinusoidal shear deformation theory and stress function. The material properties of the sandwich plate faces are continuously varied within the plate thickness according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises across the thickness direction. Numerical examples are presented to prove the effect of power law index, loading type and functionally graded layers thickness on the thermal buckling response of thick functionally graded sandwich.

Two Dimensional Numerical Model for Thermal Management of Proton Exchange Membrane Fuel Cell with Large Active Area (대면적 셀 고분자 막전해질 연료전지의 열관리를 위한 2 차원 수치 해석 모델)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.359-366
    • /
    • 2008
  • A two-dimensional thermal model of proton exchange membrane fuel cell with large active area is developed to investigate the performance of fuel cell with large active area over various thermal management conditions. The core sub-models of the two-dimensional thermal model are one-dimensional agglomerate structure electrochemical reaction model, one-dimensional water transport model, and a two-dimensional heat transfer model. Prior to carrying out the simulation, this study is contributed to set up the operating temperature of the fuel cell with large active area which is a maximum temperature inside the fuel cell considering durability of membrane electrolyte. The simulation results show that the operating temperature of the fuel cell and temperature distribution inside the fuel cell can affect significantly the total net power at extreme conditions. Results also show that the parasitic losses of balance of plant component should be precisely controlled to produce the maximum system power with minimum parasitic loss of thermal management system.

Test of Insulation of Double Pancake Windings for a 1MVA HTS Transformer (1MVA 고온초전도 변압기용 더블 팬케이크 권선의 절연시험)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Choi, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Hahn, Song-Yop;Song, Hee-Suck;Park, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1015-1017
    • /
    • 2003
  • In a research and development team of high temperature superconducting (HTS) transformer for power distribution, prior to manufacture a single phase 1MVA 22.9 kV/6.6 kV HTS transformer, a 1MVA transformer for insulation test with windings made of copper tapes with the same size as BSCCO-2223 HTS tape was manufactured. The test transformer was composed of both the copper windings of double pancake type and the shell type core of laminated silicon steel plates. The characteristics tests of the test transformer were performed, such as no load test, load test and short test at 77k using liquid nitrogen. Insulation tests, lightning impulse test, power-frequency voltage test and external insulation test, were accomplished also.

  • PDF

Development of Onshore Offshore Tower Elevator with load distribution endless winder and integrated control panel (하중 분산형 엔드리스 와인더와 통합형 제어반을 적용한 육상 해상 풍력타워 승강기 개발)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.711-719
    • /
    • 2019
  • At present, wind power is the fastest growing technology in the world. The domestic market depends heavily on imports for wind tower lift. so it manage through the overseas maker. The lift manufacture, establishment and maintenance utility is increasing, localization development of one wind tower lift is necessary with domestic fundamental base technique. In this paper, we will study the components necessary for the development of onshore offshore wind tower elevators, which are currently dependent on total imports, in line with the high growth of the wind market and the enlargement of the wind power generators. First of all, endless winders and cabins, which are the core components of the offshore wind tower lift, were examined for the components that affect the structural safety. Structural analysis was performed on Sheave, which is responsible for most of the lift lifting loads, and Block Stop, a safety device that prevents the cabin from falling in an emergency. The structural suitability was evaluated by comparing with the safety factor. In addition, the on-board control panel combines the control panel of the elevator and the drive motor driving the endless winder for efficient control of the offshore wind tower lift. The addition of features improves ride comfort at departure.

Analysis and Design of Micro Solenoid (마이크로 솔레노이드의 해석 및 설계)

  • Jeon, Y.S.;Bae, S.K.;Kim, D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.14-20
    • /
    • 2006
  • Recently, the on-off solenoid valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for on-off solenoid valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate on-off solenoid valve using the analogy of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, flow field characteristics was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D simulation using distribution curve of the force by working the front poppet.

  • PDF

Buckling and free vibration analysis of multi-directional functionally graded sandwich plates

  • Ali, Alnujaie;Atteshamuddin S., Sayyad;Lazreg, Hadji;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.813-822
    • /
    • 2022
  • In this article, the buckling and free vibration of multi-directional FGM sandwich plates are investigated. The material properties of FGM sandwich plates are assumed to be varying continuously in the in the longitudinal, transverse and thickness directions. The material properties are evaluated based on Voigt's micro-mechanical model considering power law distribution method with arbitrary power index. Equations of motion for the buckling and vibration analysis of multi-directional FGM sandwich plate are obtained based on refined shear deformation theory. Analytical solution for simply supported multidirectional FGM sandwich plate is carried out using Navier's solution technique. The FGM sandwich plate considered in this work has a homogeneous ceramic core and two functionally graded face sheets. Influence of volume fraction index in the longitudinal, transverse and thickness direction, layer thickness, and geometrical parameter over natural frequency and critical buckling load of multi-directional FGM sandwich plate is investigated. The finding shows a multi-directional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters have been identified which will guide researchers in selecting fabrication routes for improving the performance of such structures.

Perspective: Analysis of Conditions for High-efficiency/Eco-friendly Energy Production Devices for Smart Cities (스마트시티용 고효율/친환경 에너지생산장치의 조건 분석)

  • Sang Wook Kang;Jeong Uk Kim
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.46-51
    • /
    • 2023
  • The purpose of this study is to analyze the utilization forms of hydrogen fuel cells, which are the core of building a smart city, and suggest ways to solve them. In the case of power plants to utilize hydrogen fuel cell, it was analyzed as the most promising form of use in the future due to the advantage of being free from intermittence problems. However, despite many advantages, local residents' opposition continues to emerge due to concerns about explosions and the problem of carbon dioxide generation in the case of certain hydrogen production methods, and it is analyzed that resolving them will be the main key to establishing the smart city. Finally, by analyzing the current hydrogen production method and identifying the problems facing it, the solution for the complete construction of the smart city was presented.