• Title/Summary/Keyword: core power distribution

Search Result 295, Processing Time 0.024 seconds

Analysis on the Hot-spot Temperature Location of a 24MVA Cast Resin Transformer by FEM (FEM을 이용한 24MVA 몰드변압기의 Hot-spot 위치 분석 연구)

  • Kim, Yong-Bae;Ha, Jung-Woo;Shin, Pan-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.26-32
    • /
    • 2012
  • This paper calculates the core and copper losses as heating sources of a 24MVA cast resin transformer, and analyzes the thermal distribution of the transformer to find out its hot-spot area by FEM program. Since the winding of the transformer is composed with many series and parallel circuits, the analyzing model of the winding is simplified and modelled by axi-symmetric domain. As the results, the maximum temperature is estimated by $137^{\circ}C$ in the upper part of the low-voltage winding. The maximum temperature has discrepancy of approximately $10^{\circ}C$, which is able to be considered as an acceptable error range in the design stage of power transformers. For the overall pattern of the temperature distribution is almost same as test results, the analyzing method can be a useful tool to find out a hot-spot area of the winding.

Design and Fabrication of 1 MVA Single Phase HTS Transformer for Power Distribution with Natural Convection Cooling System

  • Kim, W. S.;Kim, S. H.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Park, J. H.;H. S. Son;S. Y. Hahn
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.149-152
    • /
    • 2004
  • The design and the fabrication of a 1 MVA single-phase HTS transformer are presented in this paper, The rated voltages are 22.9 ㎸ for primary and 6.6 ㎸ for secondary, and the rated currents are 44 A and 152 A respectively. The transformer has HTS double pancake type windings. This type of winding has many advantages such as ease of fabrication and maintenance, good distribution of surge voltage and insulation of windings. Single HTS wire was used for primary winding and four HTS parallel wires were used for secondary winding. These windings are arranged reciprocally with the shell type iron core. An FRP cryostat with room temperature bore was fabricated to isolate the iron core from the coolant. The winding will be cooled down to 65 K with sub-cooled liquid nitrogen using a GM-cryocooler. The sub-cooled liquid nitrogen has advantages of good insulation because of no bubbles as well as increased current capacity of HTS wire.

  • PDF

Dependence of the Partial Discharge Characteristics of Ultra-high Voltage Cable Insulators on the Measuring Temperature

  • Shin, Jong-Yeol;Park, Hee-Doo;Lee, Hyuk-Jin;Lee, Kang-Won;Kim, Won-Jong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.186-192
    • /
    • 2008
  • Cross linked polyethylene (XLPE) insulators are used as insulation in ultra-high voltage electric power cables. This study investigated the electrical properties of XLPE at different temperatures. The electrical properties of the changing tree phenomenon was examined as a function of temperature applied to the electrical conductors by measuring the partial discharge at $25^{\circ}C$ to $80^{\circ}C$ and applied voltages to the electrodes ranging from 1 kV to 40 kV. The activity of the partial discharge was examined at various temperatures using the K-means distribution. The results revealed the specimen at $80^{\circ}C$ to have the lowest inception voltage and breakdown voltage. In addition, the core of clusters was moved $0^{\circ}$ and $180^{\circ}$ at the positive region and $180^{\circ}$ and $360^{\circ}$ in the negative region in the K-means. The distribution of clusters was concentrated on the inception condition and spread out widely at the breakdown voltage.

An experimental assessment of resistance reduction and wake modification of a KVLCC model by using outer-layer vertical blades

  • An, Nam Hyun;Ryu, Sang Hoon;Chun, Ho Hwan;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.151-161
    • /
    • 2014
  • In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

Assembling and Insulation Test of 1MVA Single Phase HTS Transformer for Power Distribution

  • Kim, S. H.;Kim, W. S.;Kim, J. T.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Lee, S. J.;S. Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.30-33
    • /
    • 2003
  • 1MVA high temperature superconducting (HTS) transformer with double pancake windings made of BSCCO-2223 HTS tapes was designed and manufactured. And prototype transformer with the same capacity was manufactured also. The each rated voltage of the HTS transformer is 22.9 kV and 6.6 kV. Four parallel BSCCO-2223 HTS tapes were wound in the double pancake windings of low voltage side. In order to distribute the currents equally in each HTS tapes, the three times transposition was performed between the double pancake windings. The windings of prototype transformer were wound using copper tape with the same size as BSCCO-2223 HTS tape. The core of the transformer was designed and manufactured as a shell type core made of laminated silicon steel plate. The several characteristics tests for the prototype transformer were performed in liquid nitrogen and insulation tests were accomplished also.

Nuclear Design Analysis of Wolsung-1 CANDU-PHW Nuclear Generating Station

  • Chung, Chang-Hyun;Oh, Keun-Bae;Kim, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.203-213
    • /
    • 1978
  • A combination of computer codes such as LATREP, HWR, AXAV and CITATION is utilized in an attempt to analyze the nuclear design characteristics of the CANDU-PHWR of the Wolsung Unit 1. The major nuclear properties to be computed are tile lattice properties of CANDU fuel channel and the core channel power distribution. The computed results are compared with the PSR documentation for the Wolsung reactor. The observed discrepancies between our computation and the PSB values are discussed in terms of incomplete information on the description of the core configuration in the PSR and the different calculation methods.

  • PDF

Nodal method for handling irregularly deformed geometries in hexagonal lattice cores

  • Seongchan Kim;Han Gyu Joo;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.772-784
    • /
    • 2024
  • The hexagonal nodal code RENUS has been enhanced to handle irregularly deformed hexagonal assemblies. The underlying RENUS methods involving triangle-based polynomial expansion nodal (T-PEN) and corner point balance (CPB) were extended in a way to use line and surface integrals of polynomials in a deformed hexagonal geometry. The nodal calculation is accelerated by the coarse mesh finite difference (CMFD) formulation extended to unstructured geometry. The accuracy of the unstructured nodal solution was evaluated for a group of 2D SFR core problems in which the assembly corner points are arbitrarily displaced. The RENUS results for the change in nuclear characteristics resulting from fuel deformation were compared with those of the reference McCARD Monte Carlo code. It turned out that the two solutions agree within 18 pcm in reactivity change and 0.46% in assembly power distribution change. These results demonstrate that the proposed unstructured nodal method can accurately model heterogeneous thermal expansion in hexagonal fueled cores.

NONLINEAR CONTROL FOR CORE POWER OF PRESSURIZED WATER NUCLEAR REACTORS USING CONSTANT AXIAL OFFSET STRATEGY

  • ANSARIFAR, GHOLAM REZA;SAADATZI, SAEED
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.838-848
    • /
    • 2015
  • One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented.SMCis ameansto control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.