• 제목/요약/키워드: corbel beam

검색결과 8건 처리시간 0.023초

Analysis of reinforced concrete corbel beams using Strut and Tie models

  • Parol, Jafarali;Al-Qazweeni, Jamal;Salam, Safaa Abdul
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.95-102
    • /
    • 2018
  • Reinforced concrete corbel beams (span to depth ratio of a corbel is less than one) are designed with primary reinforcement bars to account for bending moment and with the secondary reinforcement placed parallel to the primary reinforcement (shear stirrups) to resist shear force. It is interesting to note that most of the available analytical procedures employ empirical formulas for the analysis of reinforced concrete corbels. In the present work, a generalized and a simple strut and tie models were employed for the analysis of reinforced corbel beams. The models were benchmarked against experimental results available in the literature. It was shown here that increase of shear stirrups increases the load carrying capacity of reinforced concrete corbel beams. The effect of horizontal load on the load carrying capacity of the corbel beams has also been examined in the present paper. It is observed from the strut and tie models that the resistance of the corbel beam subjected to combined horizontal and vertical load did not change with increase in shear stirrups if the failure of the corbel is limited by concrete crushing. In other words, the load carrying capacity was independent of the horizontal load when failure of the beam occurred due to concrete crushing.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.

Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach

  • Ozkal, Fatih Mehmet;Uysal, Habib
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.589-597
    • /
    • 2017
  • Strut-and-tie modeling method, which evolved on truss-model approach, has generally been preferred for the design of complex reinforced concrete structures and structural elements that have critical shear behavior. Some structural members having disturbed regions require exceptional detailing for all support and loading conditions, such as the beam-column connections, deep beams, short columns or corbels. Considering the general expectation of exhibiting brittle behavior, corbels are somewhat dissimilar to other shear critical structures. In this study, reinforcement layout of a corbel model was determined by the participation of structural optimization and strut-and-tie modeling methods, and an experimental comparison was performed against a conventionally designed model.

Strength assessment of RC deep beams and corbels

  • Adrija, D.;Geevar, Indu;Menon, Devdas;Prasad, Meher
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.273-291
    • /
    • 2021
  • The strut-and-tie method (STM) has been widely accepted and used as a rational approach for the design of disturbed regions ('D' regions) of reinforced concrete members such as in corbels and deep beams, where traditional flexure theory does not apply. This paper evaluates the applicability of the equilibrium based STM in strength predictions of deep beams (with rectangular and circular cross-section) and corbels using the available experiments in literature. STM is found to give fairly good results for corbel and deep beams. The failure modes of these deep members are also studied, and an optimum amount of distribution reinforcement is suggested to eliminate the premature diagonal splitting failure. A comparison with existing empirical and semi empirical methods also show that STM gives more reliable results. The nonlinear finite element analysis (NLFEA) of 50 deep beams and 20 corbels could capture the complete behaviour of deep members including crack pattern, failure load and failure load accurately.

Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars

  • Sergio A. Coelho;Sergio A. Coelho
    • Computers and Concrete
    • /
    • 제31권1호
    • /
    • pp.53-69
    • /
    • 2023
  • The rotational stiffness of a semi-rigid beam-to-column connection plays an important role in the reduction of the second-order effects in the precast concrete skeletal frames. The aim of this study is to present a detailed nonlinear finite element study to reproduce the experimental response of a semi-rigid precast beam-to-column connection composed by corbel, dowel bar and continuity tie bars available in the literature. A parametric study was carried using four arrangements of the reinforcing tie bars in the connection, including high ratio of the continuity tie bars passing around the column in the cast-in-place concrete. The results from the parametric study were compared to analytical equations proposed to evaluate the secant rotational stiffness of beam-to-column connections. The good agreement with the experimental results was obtained, demonstrating that the finite element model can accurately predict the structural behaviour of the beam-to-column connection despite its complex geometric configuration. The secant rotational stiffness of the connection was good evaluated by the analytical model available in the literature for ratio of the continuity tie bars of up to 0.69%. Precast beam-to-column connection with a ratio of the continuity tie bars higher than 1.4% had the secant stiffness overestimated. Therefore, an adjustment coefficient for the effective depth of the crack at the end of the beam was proposed for the analytical model, which is a function of the ratio of the continuity tie bars.

하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상 (Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique)

  • 양준모;이주하;민경환;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.13-16
    • /
    • 2008
  • 전단경간-깊이의 비가 1을 넘지 않는 캔틸레버로서 응력교란구역을 형성하는 내민받침은 보에 의해 전달되는 수직하중과 지지하고 있는 부재의 수축, 온도 변형, 크리프 변형에 의해 전달되는 수평 하중에 저항하는 부재이다. 최근, 고강도 콘크리트의 사용이 증가하고 있고, 철근 콘크리트 구조물의 부식에 대한 관심이 높아지면서 고성능의 보강재를 콘크리트 부재에 전략적으로 적용하는 하이브리드 보강기법에 대한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 강섬유 및 헤디드 바를 활용한 하이브리드 보강 기법을 내민받침에 적용하고자 섬유보강 고강도 콘크리트 내민받침을 제작하고 구조실험을 실시하였다. 강섬유의 혼입, 강섬유 혼입률의 증가에 따라 고강도 콘크리트 내민받침의 내하력, 강성, 연성은 증가하는 것으로 나타났고, 최대 균열폭은 감소하였다. 또한, 횡방향 철근에 용접하여 주인장 타이 철근을 정착한 내민받침 보다 헤디드 바를 주인장 타이 철근으로 사용한 내민받침이 더 높은 내하력, 강성, 연성을 보였다.

  • PDF

포스트텐션을 이용한 장스팬 켄틸레버보의 설계 (The Design of long cantilever beam using post-tensioned tendons in Kumjung Stadium)

  • 최동섭;김동환;김종수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.619-624
    • /
    • 2002
  • A prestressed/precast concrete system was used to build the new Asian Olympic Stadium Project in Pusan, Korea. The stadium(mainly intended for cycle racing) is designed for the 2002 Asian Olympic Games and has a seating capacity of 20,000 spectators plus a few private suites. More than 1300 prestressed/precast components were used and they include single columns, primary beams, cantilever beams, double riser stands, and double tees. Especially, a total of 24 cantilever beams is used on the fourth story for the stands and double tees. These 8m long beams are post-tensioned to prevent cracking, to increase their durability and to serve serviceability by vibration. A cantilever section with cast-in-place topping is 800mm wide and 1500mm deep. Cantilever beams are connected to the column with the corbel by cast-in place concrete. Bonded post-tensioning tendons were assembled at the job site. Dead-end anchorages were installed in the end of cantilever beams and live-end anchorage is the opposite of them. This article presents the geometric layouts, design features and so on.

  • PDF

Application of power spectral density function for damage diagnosis of bridge piers

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Mahdavi, Navideh
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.57-63
    • /
    • 2019
  • During the last two decades, much joint research regarding vibration based methods has been done, leading to developing various algorithms and techniques. These algorithms and techniques can be divided into modal methods and signal methods. Although modal methods have been widely used for health monitoring and damage detection, signal methods due to higher efficiency have received considerable attention in various fields, including aerospace, mechanical and civil engineering. Signal-based methods are derived directly from the recorded responses through signal processing algorithms to detect damage. According to different signal processing techniques, signal-based methods can be divided into three categories including time domain methods, frequency domain methods, and time-frequency domain methods. The frequency domain methods are well-known and interest in using them has increased in recent years. To determine dynamic behaviours, to identify systems and to detect damages of bridges, different methods and algorithms have been proposed by researchers. In this study, a new algorithm to detect seismic damage in the bridge's piers is suggested. To evaluate the algorithm, an analytical model of a bridge with simple spans is used. Based on the algorithm, before and after damage, the bridge is excited by a sine force, and the piers' responses are measured. The dynamic specifications of the bridge are extracted by Power Spectral Density function. In addition, the Least Square Method is used to detect damage in the bridge's piers. The results indicate that the proposed algorithm can identify the seismic damage effectively. The algorithm is output-only method and measuring the excitation force is not needed. Moreover, the proposed approach does not need numerical models.