• Title/Summary/Keyword: coprecipitates

Search Result 32, Processing Time 0.026 seconds

Synthesis of $Ni_2Y$ magnetic particles by coprecipitation method (공침법에 의한 $Ni_2Y$ 자성 분말의 합성)

  • 김한근;사공건
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.906-910
    • /
    • 1996
  • Ferroxplana N $i_{2}$Y(B $a_{2}$N $i_{2}$F $e_{12}$ $O_{22}$ ) magnetic particles, which is one of the hexagonal ferrite were synthesized by a coprecipitation method. The coprecipitates were prepared by adding aqueous solution of BaC $I_{2}$ - 2 $H_{2}$O, NiC $I_{2}$ - 6 $H_{2}$O and FeC $I_{3}$ - 6 $H_{2}$O(of which the mole ratio is $Ba^{+2}$ : N $i^{+2}$ : F $e^{3+}$= 1 : 1 : 6) to a mixture of NaOH and N $a_{2}$C $O_{3}$. The shape of Ferroxplana N $i_{2}$Y magnetic particles obtained at 1, 100(.deg. C) was hexagonal plate-like, average particle size and aspect ratio were 2(.mu.m) and 7, respectively.y.

  • PDF

Preparation of High Purity $SrTiO_3$ by Coprecipitation and Strontium Titanyl Oxalates (공심법과 (Sr-Ti)수산염에 의한 고순도의 $SrTiO_3$ 합성에 관한 연구)

  • 이종권;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.107-114
    • /
    • 1983
  • Formation of Strontium titanate from the products of coprecipitation takes place at 110$0^{\circ}C$ which is 200-30$0^{\circ}C$ lower than that from mechanical mixtures of $SrCO_3$ and $TiO_2$. This is apparently due to the nature of the compounds formed by the reaction of mixtures of aqueous solutions of $SrCl_2$ and $TiCl_4$ with an ammoniacal solution of ammoni-um carbonate and ammonium hydroxide. A procedure is described for preparing strontium titanyl oxalate tetrahydrate in the several mole ratio of $TiCl_4$ to $SrCl_2$. STrontium titanyl oxalates decompose to titanate at elevated temperature. The coprecipitates and the fired specimen were subjected to examined thermal and X-ray analyses and microstruc-ture by SEM.

  • PDF

Synthesis of High Tc Superconductor YBa2Cu3O7-$\delta$ by Oxalate Coprecipitation Method II. The Effect of Cu2+-Oxalate-Complex Formation for the Solubilities of Y3+ and Ba2+ (Oxalate공침법에 의한 고온 초전도체 YBa2Cu3O7-$\delta$의 합성 II. Cu2+-Oxalate-Complex가 Y3+ 및 Ba2+의 용해도에 미치는 영향)

  • 최진호;김배환;최규원
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.395-401
    • /
    • 1989
  • The concentrations of Cu(II), Y(III) and Ba(II) ionic species in aqueous solution due to the formation of Cu2+-oxalate-complex have been theoretically calculated with respect to pH and their solubility diagrams could be obtained. It was verified from the calculation that the excess of Cu2+ and Ba2+ should be added in order to obtain oxalate coprecipitates with the molar ratio of Y : Ba : Cu=1 : 2 : 3. The exact amount of excess species has been calculated with respect to the initial concentrations of metal ions and pH.

  • PDF

Synthsis of Ferroxplana Y-type($Ni_2Y$) Magnetic Particles (Ferroxplana Y-type($Ni_2Y$) 자성(磁性) 분체의 합성)

  • Park, S.H.;Kim, H.G.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1140-1142
    • /
    • 1993
  • It has been prepared by a coprecipitation method for Ferroxplana $Ni_2Y\;(Ba_2Ni_2Fe_{12}O_{22}$ magnetic particles, which is one of the Hexagonal ferrite. The coprecipitates were synthesized by adding aqueous solution of $BaCl_2{\cdot}2H_2O,\;NiCl_2{\cdot}6H_2O\;and\;FeCl_2{\cdot}4H_2O$ (of which the mole ratio is $Ba^{2+}:Ni^{2+}:Fe^{2+}$=1:1:6) to a mixture of NaOH and $Na_2CO_3$ solution. The shape of Ferroxplana $Ni_2Y$ magnetic particles obtained at the calcined temperature 1,100($^{\circ}C$) was hexagonal plate-like, average particle size was 2(${\mu}m$), and aspect ratio was more than 7.

  • PDF

Preparation and Characterization of Hydrothermal BaTiO3 Powders and Ceramics (수열합성법에 의한 BaTiO3분말합성 및 소결체의 제조)

  • 이병우;최경식;신동우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.577-582
    • /
    • 2003
  • BaTiO$_3$ fine powders were synthesized by hydrothermal process from peroxo-coprecipitate precursors. The peroxo-coprecipitates were obtained by addition of the BaCl$_2$, TiCl$_4$, and $H_2O$$_2$ aqueous solution to an ammonium solution. Hydrothermal reaction was conducted at various reaction temperatures, times and pH ranges. Unlike the conventional hydrothermal synthesis which needs highly alkaline condition over pH 13 with KOH or NaOH, the present method offered well-developed crystalline (perovskite) BaTiO$_3$ powders synthesized below pH 12 with use of ammonium solution. It was found that the phase-pure fine powders were formed at temperatures as low as 11$0^{\circ}C$ and the properties of the powders synthesized over 13$0^{\circ}C$ were almost same regardless of the reaction time. BET surface area of the prepared powder was as high as 76 $m^2$/g and the calculated particle (particulate) size was below 20 nm. The ultrafine particulates formed weak agglomerates. The microstructure and dielectric properties of BaTiO$_3$ ceramics sintered at the temperature range of 1150~125$0^{\circ}C$ were evaluated.

Biopharmaceutical Studies on the Coprecipitate of Metoclopramide-Polyvinylpyrrolidone (Metoclopramide-Polyvinylpyrrolidone 공침물(共沈物)에 관(關)한 생물약제학적(生物藥劑學的) 연구(硏究))

  • Yong, Jae-Ick;Yu, Bong-Shin
    • Journal of Pharmaceutical Investigation
    • /
    • v.10 no.3
    • /
    • pp.33-45
    • /
    • 1980
  • In order to increase the solubility of metoclopramide, various ratio coprecipitates with polyvinylpyrrolidone (M.W. 40,000) were prepared. The experiments of the solubility, physicochemical characteristics were quantitatively developed. The solubility increased as the ratio of rnetoclopramide to polyvinylpyrrolidone in metoclopramide-polyvinylpyrrolindone coprecipitate increased. In powder state, the dissolution rate of metoclopramide-polyvinylpyrrolidone coprecipitate was greater than that of metoclopramide and metoclopramide-polyvinylpyrrolidone physical mixture. Dissolution characteristics of non-disintegrating disk with constant surfacearea was in accord with Noyes-Nernst equation. The intrinsic dissolution rate, G, at $37^{\circ}C$ was $3.98{\times}10^{-7}M/cm^2{\cdot}min$ for metoclopramide, $2.26{\times}10^{-6}\;M/cm^2{\cdot}min$ for 1 : 5 metoclopramide-polyvinylpyrrolidone coprecipitate, respectively. Accordingly, activation energy of metoclopramide was 15,061cal/M, 9,178cal/M for 1 : 5 metoclopramide-polyvinylpyrrolidone coprecipitate and the activation energy decreased as the coprecipitate was formed. X-ray diffraction study revealed the fact that metoclopramide was crystalline, in contrast, there was no crystallinity evident in the 1 : 5 metoclopramide-polyvinylpyrrolidone coprecipitate. There was no difference between physical mixture and coprecipitate in TLC, UV and NMR studies. From the comparision between physical mixture and coprecipitate in IR spectrum, the interaction such as association between metoclopramide and polyvinylpyrrolidone was considered. But the association was easily dissociated in methanol solution.

  • PDF

Crystallization of Coprecipitates Prepared from Lead Nitrate and Titanium Tetrachloride (질산납과 사염화티탄으로부터 제조된 공침물의 결정화)

  • Choe, Byeong-Cheol;Lee, Mun-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.541-549
    • /
    • 1994
  • The crystallization behavior and structural change of amorphous $PbTiO_{3}$ precursors prepared by coprecipitation method were investigated by XRD, Raman spectra, TEM, and RDF. The precursors were prepared at $45^{\circ}C$ and pH of 9 from a mixed solution of lead nitrate and titanium tetrachloride derived using $H_2O_2$ or $NH_4NO_3$ as an ion stabilizer. The activation energy and temperature for crystallization of the coprecipitate prepared using $NH_4NO_3$ as an ion stabilizer were lower than that derived from the solution containing $H_2O_2$ stabilizer. The amorphous coprecipitate transformed to transient phase and then to crystalline $PbTiO_{3}$. Average interatomic distances of amorphous states decreased with increasing heat-treatment temperature.

  • PDF

Synthesis of Monodisperse Magnetite Nanocrystallites Using Sonochemical Method (음향화학법을 이용한 균일한 나노 자성체의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized magnetite particles using coprecipitation method, sonochemical method without surfactant, and sonochemical method with surfactant, in order to investigate the effect of ultrasonic irradiation and surfactant on the coprecipitates of metal ions. The size of the magnetite nanoparticles prepared by coprecipitation method, and sonochemical method without surfactant showed broad distributions. But we got uniform nanoparticles using a sonochemical method with oleic acid. The average size of the particles can be controlled by the ratio $R=[H_2O]/[surfactant]$. The size of the magnetite nanoparticles prepared by this method showed narrow distributions. We have characterized the nanoparticles using an X-ray diffraction (XRD), a superconducting quantum interference device (SQUID), and atomic force microscope (AFM). The size and distribution of the magnetite nanoparticles were measured by dynamic light scattering (DLS) method.

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Formation of Hexagonal Ferrite $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$) Prepared by Coprecipitation-oxidation Method (공침산화법에 의한 육방정 페라이트 $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$)의 생성)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1023-1029
    • /
    • 2001
  • Hexagonal ferrite $Co_2$Z(B $a_3$ $Co_2$F $e_{24}$ $O_{41}$ ) was prepared by various coprecipitation-oxidation methods. The formation of $Co_2$Z was studied in order to determine the optimal method. The $Co_2$Z composition hydroxides were prepared with the different oxidation and precipitation from the aqueous solution of $Ba^{2+}$, $Co^{2+}$ and F $e^{2+}$ chloride mixture. The coprecipitates were heat-treated at various temperatures, and their formation phases and microstructures were investigated from the analyses of DTA/TGA, powder XRD and SEM. The $Co_2$Z phase was observed in the case where the precursor will have the amorphous like oxyhydoxide($\delta$-FeOOH), and formed from $Ba_3$F $e_{32}$ $O_{51}$ , BaF $e_{12}$ $O_{19}$ (M-type) and $Ba_2$ $Co_2$F $e_{12}$ $O_{22}$ (Y-type). The $Co_2$Z was synthesized by the heat-treatment of the coprecipitate, which was prepared from the precipitation after oxidizing the chloride mixed solution, above 110$0^{\circ}C$.EX>.

  • PDF