• Title/Summary/Keyword: copper-containing

Search Result 445, Processing Time 0.027 seconds

Relationship between Toxicity of Heavy Metals and Sludge Retention Time in Sequencing Batch Reactor Process (연속회분식반응조 공정에서 슬러지 체류시간과 중금속 독성의 관계)

  • Kim, Keum-Yong;Cho, Young-Cheol;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.283-288
    • /
    • 2007
  • In order to elucidate the relationship between the sludge retention time(SRT) and the toxicity of heavy metals, such as copper (Cu), cadmium(Cd), and zinc(Zn), in sequencing batch reactor(SBR) process, IC50 was estimated with measuring of INT-dehydrogenase activity in variable SRTs. When the concentrations of heavy metals were increased, the activity of INT-dehydrogenase was gradually decreased indicating the heavy metals inhibit bacterial activity. Cu showed higher toxicity than Zn and Cd. $IC_{50}$ of Cu, Cd, and Zn ranged from $0.37\sim1.96$ mg/L, $15.4\sim16.9$ mg/L, and $9.70\sim23.4$ mg/L, respectively. The toxicity of Cu and Zn was reversely proportional to the length of SRT. It is probably caused by the increased concentration of extracellular polymeric substances in longer SRT which absorb heavy metals. Therefore, the operation of SBR with increased SRT is desirable in treatment of industrial wastewater containing heavy metals.

Molecular Cloning and Expression of a Laccase from Ganoderma lucidum, and Its Antioxidative Properties

  • Joo, Seong Soo;Ryu, In Wang;Park, Ji-Kook;Yoo, Yeong Min;Lee, Dong-Hyun;Hwang, Kwang Woo;Choi, Hyoung-Tae;Lim, Chang-Jin;Lee, Do Ik;Kim, Kyunghoon
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.112-118
    • /
    • 2008
  • Laccases are multicopper-containing oxidases that catalyze the oxidation of many aromatic compounds with concomitant reduction of oxygen to water. Interest in this enzyme has arisen in many fields of industry, including detoxification, wine stabilization, paper processing, and enzymatic conversion of chemical intermediates. In this study, we cloned a laccase gene (GLlac1) from the white-rot fungus Ganoderma lucidum. The cloned gene consists of 4,357 bp, with its coding region interrupted by nine introns, and the upstream region has putative CAAT and TATA boxes as well as several metal responsive elements (MREs). We also cloned a full-length cDNA of GLlac1, which contains an uninterrupted open reading frame (ORF) of 1,560 bp coding for 520 amino acids with a putative 21-residue signal sequence. The DNA and deduced amino acid sequences of GLlac1 were similar but not identical to those of other fungal laccases. GLlac1 was released from the cells when expressed in P. pastoris, and had high laccase activity. In addition, GLlac1 conferred antioxidative protection from protein degradation, and thus may be useful in bio-medical applications.

Production of Human Keratinocyte 14 Promoter Driven EC-SOD Transgenic Mice

  • Kim, Sung-Hyun;Lee, Tae-Hoon;Kim, Kil-Soo;Lee, Eun-Ju;Kim, Myoung-Ok;Park, Jun-Hong;Cho, Kyoung-In;Jung, Boo-Kyung;Kim, Hee-Chul;Hwang, Sol-Ha;Lee, Hoon-Taek;Ryoo, Zae-Young
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.222-222
    • /
    • 2004
  • Superoxide dismutases are key antioxidant enzymes in metabolism of reactive oxygen species. Three different isoforms of SOD exist in mammals. The extracellular SOD (EC-SOD) is the most recently discovered SOD family member. This isoform is a copper- and zinc-containing enzyme like Cu/Zn-SOD and a homotetrameric glycoprotein with a molecular weight of about 165 kDa in mouse. (omitted)

  • PDF

Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.391-397
    • /
    • 2014
  • Acid mine drainage occurrence is a serious environmental problem by mining industry; it usually contain high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of greatest concern. It causes mine impacted soil pollution with mining and smelting activities, fossil fuel combustion, and waste disposal. In the present study, three bacterial strains capable of producing urease were isolated by selective enrichment of heavy metal contaminated soils from a minei-mpacted area. All isolated bacterial strains were identified Sporosarcina pasteurii with more than 98% of similarity, therefore they were named Sporosarcina sp. KM-01, KM-07, and KM-12. The heavy metals detected from the collected mine soils containing bacterial isolates as Mn ($170.50mg\;kg^{-1}$), As ($114.05mg\;kg^{-1}$), Zn ($92.07mg\;kg^{-1}$), Cu ($62.44mg\;kg^{-1}$), and Pb ($40.29mg\;kg^{-1}$). The KM-01, KM-07, and KM-12 strains were shown to be able to precipitate calcium carbonate using urea as a energy source that was amended with calcium chloride. SEM-EDS analyses showed that calcium carbonate was successfully produced and increased with time. To confirm the calcium carbonate precipitation ability, urease activity and precipitate weight were also measured and compared. These results demonstrate that all isolated bacterial strains could potentially be used in the bioremediation of acidic soil contaminated by heavy metals by mining activity.

Characterization of artificially induced zinc-tolerant yeast mutants (아연 저항성 갖는 인위적으로 유도된 효모 돌연변이체의 특성)

  • Lee, Sangman
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • Bioremediation is a technique using microorganisms to clean up contaminated pollutants including heavy metals. It is well known that yeasts have a high capacity to remove a wide range of metals by biosorption. Therefore, this study was focused on to obtain yeast mutant that has strong tolerance to zinc (Zn), one of representative heavy metals. The Zn resistant yeast mutant (ZnR) was induced and isolated by growing yeast cells in media containing 1 mM $ZnCl_2$ and gradually increasing the concentration until 80 mM $ZnCl_2$, in which cells were adapted and survived. The induced ZnR cells showed strong tolerance to Zn stress compared with control cells. Moreover, the ZnR cells showed increased tolerance to cadmium and nickel stress but decreased tolerance to copper stress. The increased tolerance of ZnR cells to Zn stress was due to mutation of genes. This study can be useful in bioremediation of heavy metals as the metal tolerant microorganism was artificially induced in short time.

Sythesis and Characterization of Transition Metal(II) Complexes with $NOTDH_2$ Schiff Base ($NOTDH_2$ Schiff Base를 가진 전이금속(II) 착물의 합성과 구조분석)

  • Oh, Jeong-Geun;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.498-503
    • /
    • 1999
  • Co(II), Ni(II), and Cu(II) complexes with tetradentate schiff base-$NOTDH_2$, were synthesized. The structures of these complexes were characterized by elemental analysis, IR, UV-visible, NMR spectra, and thermogravimetric analysis. The mole ratio of schiff base($NOTDH_2$) to the metal(II) at complexes was found to be 1:1. Cu(II) complexes were four-coordinated configuration, while Co(II) and Ni(II) complexes were hexacoordinated configuration containing two water molecules and all complexes were non-ionic compounds.

  • PDF

Chitinolytic and Chitosanolytic Activities from Crude Cellulase Extract Produced by A. niger Grown on Apple Pomace Through Koji Fermentation

  • Dhillon, Gurpreet Singh;Brar, Satinder Kaur;Kaur, Surinder;Valero, Jose R.;Verma, Mausam
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1312-1321
    • /
    • 2011
  • Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase $79.24{\pm}4.22$ IU/gram fermented substrate (gfs) and CMCase $124.04{\pm}7.78$ IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase $96.67{\pm}4.18$ IU/gfs and CMCase $146.50{\pm}11.92$ IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of $70.28{\pm}3.34$ IU/gfs and $60.18{\pm}3.82$ to $64.20{\pm}4.12$ IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations.

Characterization and Methanol Biosynthesis of a Methane-Oxidizing Bacterium, Methylomonas sp. SM4, Isolated from Rice Paddy Field Soil (논에서 분리한 메탄산화세균 Methylomonas sp. SM4의 특성과 메탄올 생합성)

  • Park, Sung Min;Madhavaraj, Lavanya;Kim, Si Wouk
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.124-132
    • /
    • 2017
  • A methane-oxidizing bacterium was isolated from rice paddy field soil around Jeollanam-do province, Korea, and characterized. The isolate was gram-negative, orange pigmented and short rod ($1.1-1.2{\times}1.6-1.9{\mu}m$). It was catalase and urease-negative but oxidase-positive. The strain utilized methane and methanol as sole carbon and energy sources. It had an ability to grow with an optimum pH 7.0 and an optimum growth temperature $30^{\circ}C$. The strain was resistant to antibiotic polymyxin B but sensitive to streptomycin, kanamycin, ampicillin, chloramphenicol and rifampicin. The isolate required copper for their growth with concentration range of $2-25{\mu}M$, with an optimum of $10{\mu}M$. Under optimal culture condition, specific cell growth rate and generation time were found to be $0.046hr^{-1}$ and 15.13 hr, respectively. Phylogenetic analysis based on 16S rDNA sequences indicated that the strain formed a tight phylogenetic lineage with Methylomonas koyamae with a value of 99.4% gene sequence homology. So, we named the isolate as Methylomonas sp. SM4. 8.6 mM methanol was accumulated in the reaction mixture containing 70 mM sodium formate and 40 mM $MgCl_2$ (MDH inhibitor) under atmosphere of methane:air (40:60) mixture for 24 hr at $30^{\circ}C$.

Support Effect of Nano Structured Carbon Nano Sphere and Nano Bowl of Carbon in the Phenol Hydroxylation and its Solvent Dependence (나노구조를 갖는 중공구형 및 중공반구형 다공성 탄소 담체가 페놀 수산화 반응에 미치는 영향 및 용매 의존도)

  • Kwon, Song Yi;Yoon, Songhun;Kim, Hui-Yeong;Lee, Jae Wook;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.423-427
    • /
    • 2010
  • Carbon nano sphere(CNS) and nano bowl of carbon(NBC) containing 1.0 wt% copper were prepared by impregnation method and their catalytic activity was compared in the phenol hydroxylation with hydrogen peroxide in the presence of water and acetonitrile as a solvent, respectively. Cu content of catalysts was determined by EDS, and BET, pore volume, pore size and pore size distribution were compared. For both catalysts, phenol conversion, $H_2O_2$ efficiency and yield of catechol and hydroquinone were higher in the presence of water as a solvent than those in the presence of actonitrile. And catalytic activity such as phenol conversion and $H_2O_2$ efficiency of 1.0 Cu/CNS is about two times higher than that of 1.0 Cu/NBC in water solvent.

Through-Silicon-Via Filling Process Using Cu Electrodeposition (구리 전해 도금을 이용한 실리콘 관통 비아 채움 공정)

  • Kim, Hoe Chul;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.723-733
    • /
    • 2016
  • Intensive researches have been focused on the 3-dimensional packaging technology using through silicon via (TSV) to overcome the limitation in Cu interconnection scaling. Void-free filling of TSV by the Cu electrodeposition is required for the fabrication of reliable electronic devices. It is generally known that sufficient inhibition on the top and the sidewall of TSV, accompanying the selective Cu deposition on the bottom, enables the void-free bottom-up filling. Organic additives contained in the electrolyte locally determine the deposition rate of Cu inside the TSV. Investigation on the additive chemistry is essential for understanding the filling mechanisms of TSV based on the effects of additives in the Cu electrodeposition process. In this review, we introduce various filling mechanisms suggested by analyzing the additives effect, research on the three-additive system containing new levelers synthesized to increase efficiency of the filling process, and methods to improve the filling performance by modifying the functional groups of the additives or deposition mode.