• Title/Summary/Keyword: copper oxide nanowires

Search Result 9, Processing Time 0.031 seconds

Evolutional Transformations of Copper Nanoparticles to Copper Oxide Nanowires

  • Gang, Min-Gyu;Yun, Ho-Gyu;Kim, Yeong-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.2-18.2
    • /
    • 2011
  • We study and analyze here a novel and simple approach to produce copper oxide nanowires in a methanol as an alternative to chemical synthesis routs and VLS-growth method. First, copper oxide nanowires are grown from copper nanoparticles in methanol at $60^{\circ}C$. Nanoparticles are synthesized via inert gas condensation, one of the dry processes. Synthesized nanowires were confirmed via XRD, FESEM and TEM. As a result, all particles have grown to Cu2O nanowires (20~30 nm in diameter, 5~10 um in length; aspect ratio >160~500). Next, these synthesized oxide nanowires are reduced copper nanowires in the furnace under hydrogen flow at $200{\sim}450^{\circ}C$. The evolution of oxide nanowires and their transformation to copper nanowires is studied as a function of time.

  • PDF

Synthesis and Characterization of Copper Oxide nanowires by Facile Heating under Static Air Condition

  • Kwon, Tae-Ha;Choi, Hyek-Hwan;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.99-102
    • /
    • 2010
  • Large-scaled area and aligned copper oxide nanowires have been synthesized by a vapor-phase approach to the facial synthesis of copper oxide nanowires supported on the surface of a copper gasket. The effects of annealing temperature and time were investigated. Long and aligned nanowires can only formed within a narrow temperature range from 400 to $500^{\circ}C$ for 4 hrs. Annealing copper gasket in static air produces large-area, uniform, but not well vertically aligned nanowires along the copper gasket surface. The surface of copper gasket is converted into bicrystal CuO nanowires was observed after the copper gasket is annealed under static air condition.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Growth and analysis of Copper oxide nanowire

  • Park, Yeon-Woong;Seong, Nak-Jin;Jung, Hyun-June;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.245-245
    • /
    • 2009
  • l-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Copper oxide(CuO) has been realized as a p-type metal oxide semiconductor with narrow band gap of 1.2 -1.5eV. Copper oxide nanostructures can be synthesized by various growth method such as oxidation reaction, thermal evaporation thermal decomposition, sol-gel. and Mostly CuO nanowire prepared on the Cu substrate such as Copper foil, grid, plate. In this study, CuO NWs were grown by thermal oxidation (at various temperatures in air (1 atm)) of Cu metal deposited on CuO (20nm)/$SiO_2$(250nm)/Si. A 20nm-thick CuO layer was used as an adhesion layer between Cu metal and $SiO_2$

  • PDF

Synthesis and Characterization of Cu Nanowires Using Anodic Alumina Template Based Electrochemical Deposition Method (양극산화 알루미나 주형 기반의 전해 증착법을 이용한 구리 나노선의 합성 및 특성 연구)

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.367-372
    • /
    • 2012
  • Single crystalline Cu nanowires with controlled diameters and aspect ratios have been synthesized using electrochemical deposition within confined nanochannels of a porous anodic aluminium oxide(AAO) template. The diameters of nano-sized cylindrical pores in AAO template were adjusted by controlling the anodization conditions. Cu nanowires with diameters of approximately 38, 99, 274 nm were synthesized by the electrodeposition using the AAO templates. The crystal structure, morphology and microstructure of the Cu nanowires were systematically investigated using XRD, FE-SEM, TEM and SAED. Investigation results revealed that the Cu nanowires had the controlled diameter, high aspect ratio and single crystalline nature.

Synthesis of Core-shell Copper nanowire with Reducible Copper Lactate Shell and its Application

  • Hwnag, Hyewon;Kim, Areum;Zhong, Zhaoyang;Kwon, Hyeokchan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.1-430.1
    • /
    • 2016
  • We present the concept of reducible fugitive material that conformally surrounds core Cu nanowire (NW) to fabricate transparent conducting electrode (TCE). Reducing atmosphere can corrodes/erodes the underlying/surrounding layers and might cause undesirable reactions such impurity doing and contamination, so that hydrogen-/forming gas based annealing is impractical to make device. In this regards, we introduce novel reducible shell conformally surrounding indivial CuNW to provide a protection against the oxidation when exposed to both air and solvent. Uniform copper lactate shell formation is readily achievable by injecting lactic acid to the CuNW dispersion as the acid reacts with the surface oxide/hydroxide or pure copper. Cu lactate shell prevents the core CuNW from the oxidation during the storage and/or film formation, so that the core-shell CuNW maintains without signficant oxidation for long time. Upon simple thermal annealing under vacuum or in nitrogen atmosphere, the Cu lactate shell is easily decomposed to pure Cu, providing an effective way to produce pure CuNW network TCE with typically sheet resistance of $19.8{\Omega}/sq$ and optical transmittance of 85.5% at 550 nm. Our reducible copper lactate core-shell Cu nanowires have the great advantage in fabrication of device such as composite transparent electrodes or solar cells.

  • PDF

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

CuO Nanograss as a Substrate for Surface Enhanced Raman Spectroscopy

  • Lee, Jun-Young;Park, Jiyun;Kim, Jeong-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.249-249
    • /
    • 2013
  • Surface-enhanced Raman spectroscopy (SERS) is a sensitive approach to detect and to identify a variety of molecules. To enhance the Raman signal, optimization of the gap between nanostructures is quite important. One-dimensional materials such as nanowires, nanotubes, and nanograsses have great potential to be used in SERS due to their unique sizes and shape dependent characteristics. In this study we investigate a simple way to fabricate SERS substrates based on randomly grown copper oxide (CuO) nanowires. CuO nanograss is fabricated on pre-cleaned Cu foils. Cu oxidized in an ammonium ambient solution of 2.5 M NaOH and 0.1 M $(NH_4)_2S_2O_8$ at $4^{\circ}C$ for 10, 30, and 60 minutes. Then, Cu(OH)2 nanostructures are formed and dried at $180^{\circ}C$ for 2 h. With the drying process, the Cu(OH)2 nanostructure is transformed to CuO nanograss by dehydration reaction. CuO nanograss are grown randomly on Cu foil with the average length of 10 ${\mu}m$ and the average diameter of a 100 nm. CuO nanograsses are covered by Ag with various thicknesses from 10 to 30 nm using a thermal evaporator. Then, we immerse uncoated and Ag coated CuO nanowire samples of various oxidation times in a 0.001M methanol-based 4-mercaptopyridine (4-Mpy) in order to evaluate SERS enhancement. Raman shift and SERS enhancement are measured using a Raman spectrometer (Horiba, LabRAM ARAMIS Spectrometer) with the laser wavelength of 532 nm. Raman scattering is believed to be enhanced by the interaction between CuO nanograss and Ag island film. The gaps between Ag covered CuO nanograsses are diverse from <10 nm at the bottom to ~200 nm at the top of nanograsses. SERS signal are improved where the gaps are minimized to near 10s of nanometers. There are many spots that provide sufficiently narrow gap between the structures on randomly grown CuO nanograss surface. Then we may find optimal enhancement of Raman signal using the mapping data of average results. Fabrication of CuO nanograss based on a solution method is relatively simple and fast so this result can potentially provide a path toward cost effective fabrication of SERS substrate for sensing applications.

  • PDF