• Title/Summary/Keyword: copper ions

Search Result 359, Processing Time 0.027 seconds

Electrodialysis of metal plating wastewater with neutralization pretreatment: Separation efficiency and organic removal

  • Park, Yong-Min;Choi, Su-Young;Park, Ki-Young;Kweon, Jihyang
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.179-187
    • /
    • 2020
  • Electrodialysis has been applied for treatment of industrial wastewater including metal electroplating. The wastewater from metal plating industries contains high concentrations of inorganics such as copper, nickel, and sodium. The ions in the feed were separated due to the electrical forces in the electrodialysis. The concentrate compartment is exposed to the elevated concentrations of the ions and yielded inorganic precipitations on the cation exchange membranes. The presence of organic matter in the metal plating wastewater affects complex interfacial reactions, which determines characteristics of inorganic scale fouling. The wastewater from a metal plating industry in practice was collected and the inorganic and organic compositions of the wastewater were analyzed. The performance of electrodialysis of the raw wastewater was evaluated and the effects of adjusting pH of the raw water were also measured. The integrated processes with neutralization and electrodialysis showed great removal of heavy metals sufficient to discharge to aquatic ecosystem. The organic matter in the raw water was also reduced by the neutralization, which might enhance removal performance and alleviate organic fouling in the integrated system.

Basic Studies on the Recovery of Zinc Metal from Wastewater by Cyclic Voltammetry (循環走査법에 의한 廢水로부터 亞鉛 回收에 관한 基礎 硏究)

  • 김진화;김동수
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.29-36
    • /
    • 2001
  • Cyclic voltammetry has been applied in the basic studies for the treatment and recovery of heavy metal component contained in wastewater by electrochemical reduction. The electrochemical behaviors of zinc ion for zinc metal electrode and carbon elec-trode were characterized by voltammograms and it was showed that zinc ions were reduced to metallic form below -0.76 V vs SHE. The change in the features of crystalline form of metallic zinc upon oxidation and reduction reaction was observed by X-ray diffraction method and the Am analysis verified that zinc ions were reduced to metal on copper plate. The results of this study were regarded to be important and meaningful in the treatment of heavy metal containing wastewater and, as a result, in the obtainment of metallic product by electrochemical method.

  • PDF

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Effect of High Pressure on the Stability of Metal Complex Ion by Polarographic Method (폴라로그래피에 의한 金屬錯이온의 安定度에 미치는 壓力의 影響)

  • Heung Lark Lee;Zun Ung Bae;Yu Chul Park;Jong Hoon Yun
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.30-36
    • /
    • 1988
  • The effect of high pressure on the stability of copper(II), cadmium(II) and zinc (II) complex ions with ethylenediamine, propylenediamine, diethylenetriamine has been investigated polarographically. 0.10M KN$O_3$ solution was used as a supporting electrolyte. The concentration of chelating agents was varied from 0.01M to 1.00M. The dissociation constants of metal complex ions were increased with increasing the pressure from 1 atmosphere to 1,500 atmospheres. The increment of the dissociation constant per unit atmosphere varied from 1.1 ${\times} 10^{-3}$% for Cu(dien)$_2^{2+}$ to 5.0 ${\times} 10^{-3}$ % for Zn(en)$_2^{2+}$.

  • PDF

pH Effect on Lead Transport into astrocytes by Divalent Metal Transporter 1 (DMT1/Nramp2)

  • Cheong, Jae-Hoon;Desmond I. Bannon;Josep P. Bressler
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.91-91
    • /
    • 2001
  • Nramp2, also known as DMT1 and DCT1, is a 12-transmembrane domain protein responsible for dietary iron uptake as well as metal ions such as lead, manganese, zinc, copper, nickel, cadmium, and cobalt. High expression of DMT1 increase lead uptake, and DMT1-dependent lead transport was H -dependent and inhibited by iron ions. The molecular mechanism of lead transport in CNS is as yet unknown. although interactions between iron and lead at the level of absorption have been known for some time. The process of lead uptake into astrocytes was not known yet. Nramp2 may mediate transport of heavy metal into astrocytes. We investigated whether Nramp2 mediate transport of lead into astrocytes. And we do whether Nramp2 was expressed highly by deprivation of iron in Astrocytes, and lead uptake into astrocytes was influenced by expression of Nramp2. Immortalized human fetal astrocyte(SV-FHA) cells were cultured in medium containing Dulbecco's modified Eagle's medium and treated with Deferoxamine. Northern blot analysis was done for determining mRNA level of DMT1 and lead uptake assay was done in incubation condition of pH 5.5 and 7.4.

  • PDF

A Simple Carbazole-based Schiff Base as Fluorescence "off-on" Probe for Highly Selective Recognition of Cu2+ in Aqueous Solution

  • Tang, Lijun;Wu, Di;Hou, Shuhua;Wen, Xin;Dai, Xin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2326-2330
    • /
    • 2014
  • A carbazole-based Schiff base CB2 was synthesized and applied as a highly selective and sensitive fluorescent probe for $Cu^{2+}$ in $H_2O$-DMSO (8/2, v/v, pH = 7.4) solution. CB2 exhibits an excellent selectivity to $Cu^{2+}$ over other examined metal ions with a prominent fluorescence "turn-on" at 475 nm. CB2 and $Cu^{2+}$ forms a 1:2 binding ratio complex with detection limit of $9.5{\mu}M$. In addition, the $Cu^{2+}$ recognition process is hardly interfered by other examined metal ions.

Heavy Metal Contamination and Process for Its Removal in the Vicinity of the Dalsung Cu-W Mine (달성광산(達成鑛山) 주변지역(周邊地域)에서의 중금속오염(重金屬汚染)과 이의 제거방안(除去方案))

  • Kim, Kyoung-Woong;Hong, Young-Kook;Kim, Taik-Nam
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The Dalsung copper-tungsten mine in the Taegu area, Korea was closed in 1975 and may be the sources of the heavy metal contamination in the tributary system and soil-plant system due to the mine drainage derived from the mine wastes and tailings. To examine the degree and extent of heavy metal contamination in the vicinity of Dalsung mine area, stream water and soil samples were taken and analyzed for heavy metals by ICP-AES and AAS. Highly contaminated soils are found near the Lower Tunnel No.0 ranging up to $1760{\mu}g/g$ As, $2060{\mu}g/g$ Cu, $1120{\mu}g/g$ Pb and 346 ${\mu}g/g$ Zn. From the results of the sequential extraction methods for the metal speciation, the heavy metals in soils may be derived from soil parent materials and acid mine drainage. With the processes for the heavy metal removal, most of the heavy metal ions in the acid mine drainage are removed by being exchanged with Ca ions held by the bentonite, hydroxyapatite and calcium hydoxide.

  • PDF

Effects of CuO Addition on the Dielectric Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ceramics (CuO의 첨가가 PMN-PT 세라믹스의 유전특성에 미치는 영향)

  • 김효태;변재동;김인태;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1056-1064
    • /
    • 1995
  • 95Pb(Mg1/3Nb2/3)O3-5PbTiO3 (hereinafter designated as 95PMN-5PT) system was prepared by the columbite-precursor method with 2 mol% excess PbO to compensate the PbO loss during thermal process. The amount of CuO was 1~10 mol%, and the effects of CuO addition on the dielectric properties of this system have been investigated. From the microstructures, XRD analysis and dielectric measurements, the solubility limit of CuO in 95PMN-5PT was found to be around 3 mol%. Lattice parameter and Curie temperature were found to be decreased as the amount of CuO increased up to the solubility limit. This result confirmed that the Cu2+-ions substituted the Pb2+-ions. It was revealed that the addition of CuO on 95PMN-5PT promoted the sinterability and properties. The room temperature dielectric constant, the loss factor and the specific resistivity of the specimens processed with optimum conditions were 23000, 1%, and 8$\times$1011Ω.cm, respectively.

  • PDF

Study on Solvent Extraction Using Salen(NEt2)2 as a Chelating Agent for Determination of Trace Cu(II), Mn(II), and Zn(II) in Water Samples

  • In, Gyo;Kim, Young-Sang;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.969-973
    • /
    • 2008
  • Solvent extraction using a Schiff-base, salen$(NEt_2)_2$, as a chelating agent has been conducted on several water samples to study the determination of trace Cu(II), Mn(II) and Zn(II). Experimental conditions for the formation and extraction of metal complexes were optimized with an aqueous solution similar in composition to the samples. The matrix difference between the sample and standard solutions was approximately matched, and the pH of each sample solution was adjusted to 9.5 with $NaHCO_3/NaOH$ buffer. The concentration of salen$(NEt_2)_2$ was $7.3\;{\times}\;10^{-3}$ mol/L, and the complexes were extracted into MIBK solvent followed by the measurement of AAS absorbance. The potential interference of concomitant ions was investigated, but no interference from alkaline and alkali earth ions was shown in this procedure. The given procedure is precise, as judged from the relative standard deviation of less than 5% for five measured data. The recovery of 93-103% shows that this method is quantitative for such trace metal analysis.

Investigation on the Effect of Organic Additives on the Electroformed Cu Deposits with Micro-patterns (유기물 첨가제가 마이크로 패턴 구리 전주 도금에 미치는 영향 연구)

  • Lee, Joo-Yul;Kim, Man;Lee, Kyu-Hwan;Yim, Seong-Bong;Lee, Jong-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The effect of organic additives, 1-(3-sulfoproyl)-2-vinylpyridineium hydroxide (SVH) and thiourea (TU), on the precision copper electrodeposition was investigated with optical, electrochemical and x-ray diffraction techniques. It was found that SVH played a r ole as a n accelerator and TU as an i nhibitor during the electroreduction of cupric ions in acidic Cu electroplating solution. Through electrochemical measurements, TU showed more strong interaction with cupric ions than SVH and dominated overall Cu electroplating process when both additives were present in the solution. In the case of three dimensional Cu electrodeposition on the 20 ${\mu}m$-patterned Ni substrates, SVH controlled the upright growth of Cu electrodeposits and so determined its flatness, while TU prohibited the lateral spreading of Cu in the course of pulse-reverse pulse current adaptation. With microscopic observation, we obtained the optimum organic additives composition, that is, 100 ppm SVH and 200 ppm TU during the current pulsation.