• Title/Summary/Keyword: copper alloys

Search Result 167, Processing Time 0.026 seconds

The effect of copper alloy scaler tip on the surface roughness of dental implant and restorative materials (구리 합금 초음파 스케일러 팁이 치과 임플란트 및 수복 재료 표면에 미치는 영향)

  • Lee, Ah-Reum;Chung, Chung-Hoon;Jung, Gyu-Un;Pang, Eun-Kyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.177-185
    • /
    • 2014
  • Purpose: This study is designed to investigate the various impacts of different types of scaler tips such as cooper alloy base tip and the others on the surface roughness of teeth and implant by the method which is currently in clinical use. Materials and methods: Four different types of disc shaped porcelain, titanium, zirconia, and Type III gold alloy dental materials sized 15 mm diameter, 1.5 mm thickness were used for the experiment. Plastic hand curette (Group PS), cooper alloy new tip (Group IS), and stainless steel tip (Group SS) were used as testing appliances. A total of 64 specimens were used for this study; Four specimens for each material and appliance group. Surface roughness was formed with 15 degree angle in ultrasonic scaler tip and with 45 degree angle in hand curette of instrument tip and the specimen surface with 5 mm long, one horizontal-reciprocating motion per second for 30 seconds by 40 g force. To survey the surface roughness of each specimen, a field emission scanning electron microscope, an atomic force microscope, and a surface profiler were used. (Ra, ${\mu}m$). Results: According to SEM, most increased surface roughness was observed in SS group while IS groups had minimal roughness change. Measurement by atomic force microscope presented that the surface roughness of SS group was significantly greater than those of PS, IS and control groups in the type III gold alloy group (P<.05). IS group showed lesser surface roughness changes compared to SS group in porcelain and gold alloy group (P<.05). According to surface profiler, surface roughness of SS group showed greater than those of PS, IS and control groups and IS group showed lesser than those of SS group in all specimen groups. Type III gold alloy group had large changes on surface roughness than those of porcelain, titanium, zirconia (P<.05). Conclusion: The result of this study showed that newly developed copper alloy scaler tip can cause minimal roughness impacts on the surface of implant and dental materials; therefore this may be a useful alternative for prophylaxis of implant and restored teeth.

A Study on Characteristics of Alloy Materials through Reproduction Experiment of High-tin Bronze Mirror with Geometric Designs (고주석 청동정문경(靑銅精文鏡)의 재현실험을 통한 합금재료의 특성 연구)

  • Lee, In Kyeong;Jo, Young Hoon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.508-517
    • /
    • 2019
  • This study analyzed on alloys and by-product samples produced through the reproduction experiment of bronze mirror with geometric designs. The alloy ratio used in the first and second reproduction experiments was based on the analysis results of bronze mirror with geometric designs(Cu 61.68%, Sn 32.25%, Pb 5.46%) which is the national treasure No. 141. As a result of portable X-ray fluorescence analysis on the raw materials used in the reproduction experiment, the contents of copper raw materials were 98.85 wt% for Cu, tin raw materials were 99.03 wt% for Sn, and lead raw materials were 70.19 wt% for Pb, and 21.81 wt% for Sn. Sn and Pb were added 5 wt% more considering the evaporation amount of tin and lead during alloy melting. The result produced by the first reproduction experiment were 58.75 wt% for Cu, 36.87 wt% for Sn, 4.39 wt% for Pb, and the other result produced by the second reproduction experiment were 58.66 wt% for Cu, 35.89 wt% for Sn, and 5.50 wt% for Pb. The composition of the components was about 3.00 wt% in Cu and Sn respectively, and the microstructure was similar to the previous studies because the δ phase was observed mainly. The results of this study will be used as basic data for the materialistic characteristics of ancient bronze mirror in the future.

The Environmental Hazard Assessment of Siting Restricted Industries from Industrial Complex in Rural Area Applied by Chemical Ranking and Scoring System (화학적 등급화기법을 적용한 농공단지 입주제한업종의 환경유해성 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • The priorities of siting restriction was derived from quantification of environmental hazard according to industrial classification based on 'Chemical Ranking and Scoring System(CRS)' which is handling the discharge characteristics of 31 industrial classifications regulated from locating at 'Industrial Complex in Rural Area(ICRA)'. CRS that is utilizing the data of 'Pollutant Release and Transfer Registers(PRTR)' is applied to determine human health risk and ecological risk which are calculated by discharged amount and materials $LC_{50}$ according to water, soil and air media based on industrial classification. From this process, exposure assessment and toxicity assessment for integrating the adverse environmental impact and the mitigation effect of environmental risk according to the development of environmental technologies into establishing the rational landuse management method for the 31 industrial classifications regulated from locating at ICRA was analyzed. From the assessment result of the siting restriction removal at ICRA for 31 industrial classifications, based on 2012 year reference 6 industries that includes Manufacture of Guilt Coloration Surface Processing Steel Materials, Manufacture of Biological Product, Manufacture of Smelting Refining and Alloys of Copper, Dyeing and Finishing of Fibers and Yarns, Manufacture of Other Basic Iron and Steel n.e.c., Rolling Drawing and Extruding of Non-ferrous Metals n.e.c. are calculated as having relatively lower environmental hazards, thus it is judged that the siting restriction mitigation at ICRA is possible for the 6 industrial classifications that are not discharging the specific hazardous water contaminants during manufacturing process.

Study on Material Characteristic of Modern Cultural Heritage Rickshaw (근·현대문화재 인력거 재질분석 연구)

  • Kim, Soo Chul;Choi, Jae Wan;Lee, Jee Eun
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2016
  • Modern cultural heritage were made with various materials. But there are no certain analysis for modern cultural heritage. Analysis on rickshaw from National Museum of Korean Contemporary History were carried out using P-XRF, species identification, paint film analysis, FT-IR and microscope observation. As a result Copper and Zinc were measured in metal parts. Nickel alloys were first used in the modern era for rickshaw. Wooden parts, Oak(Quercus spp.), bamboo(Phyllostachys spp.) and Hinoki cypress(Chamaecyparis spp.) were identified. Outer films were painted by 5 layers and inner films were painted by 3 layers. More simple painting process were performed on the inner part. Cotton and wool were identified by FT-IR. Also, cowhide were identified. Authenticity conservation and restoration could be carried out with the results.

Characteristics of Lead isotope ratios and Trace elements of Excavated Bronze weapons in Pre-historical Age (선사시대 출토 청동 무기류의 납동위원소비 및 미량원소 특성)

  • Kim, So Jin;Hwang, Jin Ju;Han, Woo Rim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • We examined component analysis and lead isotope ratio analysis to find out the relationship between the excavation and the production site of 25 bronze weapons from prehistoric ages. All 25 bronze weapons are ternary alloys of copper-tin-lead and lead is artificially added. The lead isotope ratios of 25 bronze weapons show that bronze are made by raw materials in the southern regions of the Korean Peninsula, including northern China. The raw materials of narrow-shaped bronze dagger are supplied in zone 1-3 and northern China. In addition, provenance of lead for bronze halberd and pearhead are the rest of the region except for zone 1 and zone 4. Silver are enriched in most samples and zinc and cobalt are deficient. Arsenic and antimony detected only specific samples and can be used as critical parameter for provenance study. Lead isotopes and trace elements of archaeological bronzes will provide conservation scientist with useful tool to study the provenance of raw materials

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Manufacturing Techniques of Bronze Seated Bodhisattva Statue of Goseongsa Temple in Gangjin (강진 고성사 청동보살좌상의 제작기술 연구)

  • LEE Seungchan;BAE Gowoon;CHUNG Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.146-159
    • /
    • 2024
  • In this study, a study on the production technology of the Buddha statue and the production of raw material origin was conducted through scientific analysis on the Bronze seated Bodhisattva Statue of Goseongsa Temple, a treasure. As a result of microstructure analysis through a metal microscope, it was confirmed that the microstructure of the Bronze seated Bodhisattva Statue of Goseongsa Temple was a process-type dendritic structure, and the casting structure of bronze was well represented, so it was manufactured through casting. Subsequently, as a result of analyzing the alloy composition ratio through SEM-EDS, it was identified as a ternary alloy with 81.26 wt% of copper (Cu) and 16.42 wt% of tin (Sn) and 1.72 wt% of lead (Pb). The results of the analysis of lead isotope ratios using a thermal ionization mass spectrometer (TIMS) were substituted into the distribution of lead isotope ratios on the Korean Peninsula, it was shown in corresponding to Jeolla-do and Chungcheong-do regions and North and South Gyeongsang Province. This suggests that the raw materials used in their production were likely sourced from the mines around Goseong Temple in Gangjin. Despite the fact that the statue is a medium and large Buddha with a total height of 51 centimeters, 1.72 wt% of lead (Pb) was found as a result of alloy composition ratio analysis, which showed a similar composition to the lead content ratio of small bronze and gilt-bronze Buddha statues. Therefore, we compared and analyzed the results of the analysis of the composition ratio of the alloys of bronze and gilt bronze statues, which has been scientifically analyzed with a compositional age similar to that of the Bronze seated Bodhisattva Statue of Goseongsa Temple. Comparison results, Various factors, such as the size of the Buddha statue as well as its stylistic characteristics and the age of composition, may exist in determining the alloy composition ratio of the bronze and gilt bronze Buddha statues, and it was confirmed that the alloy composition ratio or casting technology was properly adjusted when the Buddha statue was created. In other words, it is judged that a more comprehensive system of Buddha statue production technology should be investigated by conducting archaeological and art history studies on stylistic characteristics and age of composition, as well as scientific analysis results such as observation of internal structure, microstructure observation, and analysis of alloy composition ratio using radiation transmission irradiation.