• Title/Summary/Keyword: coordinated multi-point transmission (CoMP)

Search Result 24, Processing Time 0.021 seconds

Lattice Code of Interference Alignment for Interference Channel with 3 Users in CoMP (세 명의 사용자의 간섭 채널을 위한 협력 다중점 송수신(CoMP)에서의 격자(Lattice) 부호 간섭 정렬)

  • Lee, Moon-Ho;Peng, Bu Shi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.27-38
    • /
    • 2012
  • In this paper, we introduce CoMP in 3GPP LTE-Advanced Release 11 to take care of shadowing effects appearing in cell-edge areas to meet rapidly increasing demand for high speed transmission and multi-media data. In order to mitigate interference, orthogonalizing is ideal but it is slightly difficult to be applied to real systems. Therefore, interference alignment and avoidance are used in practical applications. Interference alignment is a scheme enabling us to consider interference our friend not enemy. We show lattice codes in Gaussian channel achieve Shannon capacity where strong interference exists. In addition, we show the relationship between channel parameter a and DoF(Degree of Freedom) applying lattice codes to interference alignment for interference channel with three users.

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.

Novel Beamforming and User Scheduling Algorithm for Inter-cell Interference Cancellation

  • Kim, Kyunghoon;Piao, Jinhua;Choi, Seungwon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.346-348
    • /
    • 2016
  • Coordinated multi-point transmission is a candidate technique for next-generation cellular communications systems. We consider a system with multiple cells in which base stations coordinate with each other by sharing user channel state information, which mitigates inter-cell interference (ICI), especially for users located at the cell edge. We introduce a new user scheduling method that considers both ICI and intra-cell orthogonality. Due to the influence of ICI cancellation and the loss reduction of effective channel gain during the beamforming process, the proposed method improves the system sum rate, when compared to the conventional method, by an average of 0.55bps/Hz for different numbers of total users per cell.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.