• Title/Summary/Keyword: coordinate transformation matrix

Search Result 92, Processing Time 0.023 seconds

Inverse Dynamic Analysis of Mechanical Systems Using the Velocity Transformation Technique (속도변환기법을 이용한 기계시스템의 역동학적 해석)

  • Lee, Byeong-Hun;Yang, Jin-Saeng;Jeon, U-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3741-3747
    • /
    • 1996
  • This paper presents a method for the inverse dynamic anlaysis of mechanical systems. Actuating forces(or torques) depending on the driving constraints are analyzed in the relative coordinate space using the velocity transformation technique. A systematic method to compose the inverse velocity transformation matrix, which is used to determine the joint reaction forces, is proposed. Two examples are taken to verify the method developed here.

Improvement of the Surface Roughness by Changing Chamfered Angle of the Insert in Face Milling (정면밀링가공에서 인서트의 챔퍼각 변화에 의한 표면거칠기 향상)

  • Kwon, Won-Tae;Lee, Seong-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.155-160
    • /
    • 2001
  • A milling process with 45 degree chamfered inserts produces a perfect flat surface only in theory. It is due to many unwanted factors including thermal effect, dynamic effect, the problem of the controller used and the problem of accuracy of the machine tool. In this study, introduced is a method to improve the surface roughness by redesigning of the chamfer angle of the insert, which traditionally has been 45 degree. First, the relationship between the fixed machine coordinate and the relative coordinate on the insert is derived. This transfer matrix is used to determine the new insert angle to maximize the flatness of the machined surface. A newly designed insert is manufactured, and used to carry out the experiment. It is proved that she insert designed by the proposed method produced a much flatter surface than a traditional one.

  • PDF

Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites (2-D Braided Textile 금속복합재료의 성형과 특성 해석)

  • 이상관;김효준;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

Fabrication and Mechanical Characterization of Braided Carbon Fiber Reinforced Al Matrix Composites (Braided 탄소섬유강화 알루미늄 기지 금속복합재료의 제조 및 기계적 특성평가)

  • 김경태;이상관;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.131-134
    • /
    • 2002
  • Braided carbon fiber reinforced Al matrix composites were developed and characterized. Braided carbon fiber preforms with braiding angles of $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ were manufactured by using a braiding machine. The manufactured braided carbon fibers were used as reinforcement to fabricate Al matrix composites by employing a pressure infiltration casting method. In the processing of pressure infiltration casting, important processing parameters such as melting temperature, preheating temperature of preform and applied pressure were optimized. Prediction of elastic constants on composites was performed by using the volume averaging method, which utilizes the coordinate transformation and the averaging of stiffeness and compliance constants based upon the volume of each reinforcement and matrix material. The elastic moduli of composites were evaluated by using Resonant Ultrasound Spectroscopy(RUS) method and compared with the elastic moduli obtained from static tensile test method.

  • PDF

Color Correction with Optimized Hardware Implementation of CIE1931 Color Coordinate System Transformation (CIE1931 색좌표계 변환의 최적화된 하드웨어 구현을 통한 색상 보정)

  • Kim, Dae-Woon;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.10-14
    • /
    • 2021
  • This paper presents a hardware that improves the complexity of the CIE1931 color coordinate algorithm operation. The conventional algorithm has disadvantage of growing hardware due to 4-Split Multiply operations used to calculate large bits in the computation process. But the proposed algorithm pre-calculates the defined R2X, X2R Matrix operations of the conventional algorithm and makes them a matrix. By applying the matrix to the images and improving the color, it is possible to reduce the amount of computation and hardware size. By comparing the results of Xilinx synthesis of hardware designed with Verilog, we can check the performance for real-time processing in 4K environments with reduced hardware resources. Furthermore, this paper validates the hardware mount behavior by presenting the execution results of the FPGA board.

Measurement and Algorithm Calculation of Maxillary Positioning Change by Use of an Optoelectronic Tracking System Marker in Orthognathic Surgery (악교정수술에서 광전자 포인트 마커를 이용한 상악골 위치 변화의 계측 및 계산 방법 연구)

  • Park, Jong-Woong;Kim, Soung-Min;Eo, Mi-Young;Park, Jung-Min;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.233-240
    • /
    • 2011
  • Purpose: To apply a computer assisted navigation system to orthognathic surgery, a simple and efficient measuring algorithm calculation based on affine transformation was designed. A method of improving accuracy and reducing errors in orthognathic surgery by use of an optical tracking camera was studied. Methods: A total of 5 points on one surgical splint were measured and tracked by the Polaris $Vicra^{(R)}$ (Northern Digital Inc Co., Ontario, Canada) optical tracking system in two cases. The first case was to apply the transformation matrix at pre- and postoperative situations, and the second case was to apply an affine transformation only after the postoperative situation. In each situation, the predictive measuring value was changed to the final measuring value via an affine transformation algorithm and the expected coordinates calculated from the model were compared with those of the patient in the operation room. Results: The mean measuring error was $1.027{\pm}0.587$ using the affine transformation at pre- and postoperative situations and the average value after the postoperative situation was $0.928{\pm}0.549$. The farther a coordinate region was from the reference coordinates which constitutes the transform matrixes, the bigger the measuring error was found which was calculated from an affine transformation algorithm. Conclusion: Most difference errors were brought from mainly measuring process and lack of reproducibility, the affine transformation algorithm formula from postoperative measuring values by using of optic tracking system between those of model surgery and those of patient surgery can be selected as minimizing the difference error. To reduce coordinate calculation errors, minimum transformation matrices must be used and reference points which determine an affine transformation must be close to the area where coordinates are measured and calculated, as well as the reference points need to be scattered.

Heterogeneous Sensor Coordinate System Calibration Technique for AR Whole Body Interaction (AR 전신 상호작용을 위한 이종 센서 간 좌표계 보정 기법)

  • Hangkee Kim;Daehwan Kim;Dongchun Lee;Kisuk Lee;Nakhoon Baek
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.315-324
    • /
    • 2023
  • A simple and accurate whole body rehabilitation interaction technology using immersive digital content is needed for elderly patients with steadily increasing age-related diseases. In this study, we introduce whole-body interaction technology using HoloLens and Kinect for this purpose. To achieve this, we propose three coordinate transformation methods: mesh feature point-based transformation, AR marker-based transformation, and body recognition-based transformation. The mesh feature point-based transformation aligns the coordinate system by designating three feature points on the spatial mesh and using a transform matrix. This method requires manual work and has lower usability, but has relatively high accuracy of 8.5mm. The AR marker-based method uses AR and QR markers recognized by HoloLens and Kinect simultaneously to achieve a compliant accuracy of 11.2mm. The body recognition-based transformation aligns the coordinate system by using the position of the head or HMD recognized by both devices and the position of both hands or controllers. This method has lower accuracy, but does not require additional tools or manual work, making it more user-friendly. Additionally, we reduced the error by more than 10% using RANSAC as a post-processing technique. These three methods can be selectively applied depending on the usability and accuracy required for the content. In this study, we validated this technology by applying it to the "Thunder Punch" and rehabilitation therapy content.

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

Geometrical Reorientation of Distorted Road Sign using Projection Transformation for Road Sign Recognition (도로표지판 인식을 위한 사영 변환을 이용한 왜곡된 표지판의 기하교정)

  • Lim, Hee-Chul;Deb, Kaushik;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1088-1095
    • /
    • 2009
  • In this paper, we describe the reorientation method of distorted road sign by using projection transformation for improving recognition rate of road sign. RSR (Road Sign Recognition) is one of the most important topics for implementing driver assistance in intelligent transportation systems using pattern recognition and vision technology. The RS (Road Sign) includes direction of road or place name, and intersection for obtaining the road information. We acquire input images from mounted camera on vehicle. However, the road signs are often appeared with rotation, skew, and distortion by perspective camera. In order to obtain the correct road sign overcoming these problems, projection transformation is used to transform from 4 points of image coordinate to 4 points of world coordinate. The 4 vertices points are obtained using the trajectory as the distance from the mass center to the boundary of the object. Then, the candidate areas of road sign are transformed from distorted image by using homography transformation matrix. Internal information of reoriented road signs is segmented with arrow and the corresponding indicated place name. Arrow area is the largest labeled one. Also, the number of group of place names equals to that of arrow heads. Characters of the road sign are segmented by using vertical and horizontal histograms, and each character is recognized by using SAD (Sum of Absolute Difference). From the experiments, the proposed method has shown the higher recognition results than the image without reorientation.

Development of a shape measuring system by hand-eye robot (Hand-Eye Robot에 의한 형상계측 시스템의 개발)

  • 정재문;김선일;양윤모
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.586-590
    • /
    • 1990
  • In this paper we describe the shape measuring technique and system with a non-contractive sensor, composed of slit-ray projector and solid-state camera. For improving the accuracy and preventing measuring dead point, this sensor part is attached to the end of robot, and each sensing is executed after one step moving. By patching these sensing data, whole measuring data is constructed. The calibration between sensor and world coordinate is implemented through the specific calibration block by transformation matrix method. The result of experiment was satisfactory.

  • PDF