• Title/Summary/Keyword: cooperative transmission

Search Result 353, Processing Time 0.026 seconds

Cooperative Analog and Digital (CANDI) Time Synchronization for Large Multihop Network (다중 홉 네트워크를 위한 디지털 및 아날로그 협동 전송 시간 동기화 프로토콜)

  • Cho, Sung-Hwan;Ingram, Mary Ann
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1084-1093
    • /
    • 2012
  • For large multihop networks, large time synchronization (TS) errors can accumulate with conventional methods, such as TPSN, RBS, and FTSP, since they need a large number of hops to cover the network. In this paper, a method combining Concurrent Cooperative Transmission (CCT) and Semi- Cooperative Spectrum Fusion (SCSF) is proposed to reduce the number of hops to cover the large network. In CCT, cooperating nodes transmit the same digitally encoded message in orthogonal channels simultaneously, so receivers can benefit from array and diversity gains. SCSF is an analog cooperative transmission method where different cooperators transmit correlated information simultaneously. The two methods are combined to create a new distributed method of network TS, called the Cooperative Analog and Digital (CANDI) TS protocol, which promises significantly lower network TS errors in multi-hop networks. CANDI and TPSN are compared in simulation for a line network.

Achievable Rate Analysis for Opportunistic Non-orthogonal Multiple Access-Based Cooperative Relaying Systems

  • Lee, In-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.630-642
    • /
    • 2017
  • In this paper, we propose the opportunistic non-orthogonal multiple access (NOMA)-based cooperative relaying system (CRS) with channel state information (CSI) available at the source, where CSI for the source-to-destination and source-to-relay links is used for opportunistic transmission. Using the CSI, for opportunistic transmission, the source instantaneously chooses between the direct transmission and the cooperative NOMA transmission. We provide an asymptotic expression for the average achievable rate of the opportunistic NOMA-based CRS under Rayleigh fading channels. We verify the asymptotic analysis through Monte Carlo simulations, and compare the average achievable rates of the opportunistic NOMA-based CRS and the conventional one for various channel powers and power allocation coefficients used for NOMA.

BER Performance of Cooperative Transmission for the Uplink of TDD-CDMA Systems

  • Van, Khuong Ho;Kong, Hyung-Yun
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.17-30
    • /
    • 2006
  • In time division duplex (TDD) code division multiple access (CDMA) systems, chip-synchronous transmission in the uplink is obtainable, thus leading to free multiple access interference in flat Rayleigh fading channels plus additive white Gaussian noise. This motivates us to develop a novel cooperative transmission strategy that allows single-antenna devices to benefit from spatial diversity using orthogonal signature sequences. The proposed cooperation is applicable to many digital modulation methods and achieves the fullest diversity level, low implementation complexity, and a full data rate. Closed-form bit-error-rate expressions were also derived and compared to simulation results in order to evaluate its validity. A variety of numerical results demonstrated the cooperation's superiority over single transmission under the same transmit power constraint.

  • PDF

SINR Pricing in Non Cooperative Power Control Game for Wireless Ad Hoc Networks

  • Suman, Sanjay Kumar;Kumar, Dhananjay;Bhagyalakshmi, L.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2281-2301
    • /
    • 2014
  • In wireless ad hoc networks the nodes focus on achieving the maximum SINR for efficient data transmission. In order to achieve maximum SINR the nodes culminate in exhausting the battery power for successful transmissions. This in turn affects the successful transmission of the other nodes as the maximum transmission power opted by each node serves as a source of interference for the other nodes in the network. This paper models the choice of power for each node as a non cooperative game where the throughput of the network with respect to the consumption of power is formulated as a utility function. We propose an adaptive pricing scheme that encourages the nodes to use minimum transmission power to achieve target SINR at the Nash equilibrium and improve their net utility in multiuser scenario.

A Cooperative ARQ strategy in Ad hoc Cognitive Relays for Mobile Multimedia Communication (이동 멀티미디어 통신을 위한 Ad-hoc Cognitive Relay의 Cooperative ARQ 재전송 기법)

  • An, Mi-Eun;Kang, Hae-Lynn;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.28-35
    • /
    • 2011
  • Cooperative ARQ scheme is effective for better QoS guarantee for the next generation mobile communication systems where multimedia data transmission highly increases. In this paper, we propose a cooperative ARQ strategy in ad hoc cognitive relays for mobile multimedia communication for supporting instantaneous cooperation in MANET environment. In the proposed strategy, to support real time, delay-sensitive services, whenever a frame is transmitted from the source, each relay actively senses the SINR of the signal transmitted from the source, and determine whether to propose retransmission or not before the destination transmits feedback signal. To minimize the false retransmission decision or needless retransmission, we propose an adaptive sensing threshold optimization algorithm to maintain suboptimal sensing thresholds for each relay. By computer simulation, it is shown that the proposed cooperative ARQ retransmission scheme outperforms the conventional schemes with respect to frame transmission delay and frame loss probability in real time multimedia data transmission system.

A Multi-hop Cooperative Transmission Protocol in Mobile Ad-hoc Wireless Networks (모바일 애드혹 무선 네트워크에서 멀티 홉 협력 전송 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • In this paper, we propose a multi-hop cooperative transmission protocol over Rayleigh fading channels. In the proposed protocol, the multi-hop cooperative transmission is used to improve the system performance. Due to broadcast nature, we do not limit the receiving node to be only the next node, but the destination and all the nodes between the transmitting node and the destination. The proposed protocol can hence save the average transmit power, compared with multi-hop direct transmission protocol due to the skipped transmissions from some intermediate nodes or chosen relays. The proposed scheme is implemented and evaluated in mobile ad-hoc wireless networks.

Holistic Joint Optimal Cooperative Spectrum Sensing and Transmission Based on Cooperative Communication in Cognitive Radio

  • Zhong, Weizhi;Chen, Kunqi;Liu, Xin;Zhou, Jianjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1301-1318
    • /
    • 2017
  • In order to utilize the licensed channel of cognitive radio (CR) when the primary user (PU) is detected busy, a benefit-exchange access mode based on cooperative communication is proposed to allow secondary user (SU) to access the busy channel through giving assistance to PU's communication in exchange for some transmission bandwidth. A holistic joint optimization problem is formulated to maximize the total throughput of CR system through jointly optimizing the parameters of cooperative spectrum sensing (CSS), including the local sensing time, the pre-configured sensing decision threshold, the forward power of cooperative communication, and the bandwidth and transmission power allocated to SUs in benefit-exchange access mode and traditional access mode, respectively. To solve this complex problem, a combination of bi-level optimization, interior-point optimization and exhaustive optimization is proposed. Simulation results show that, compared with the tradition throughput maximizing model (TTMM), the proposed holistic joint optimization model (HJOM) can make use of the channel effectively even if PU is busy, and the total throughput of CR obtains a considerable improvement by HJOM.

Multi-Relay Cooperative Diversity Protocol with Improved Spectral Efficiency

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.240-249
    • /
    • 2011
  • Cooperative diversity protocols have attracted a great deal of attention since they are thought to be capable of providing diversity multiplexing tradeoff among single antenna wireless devices. In the high signal-to-noise ratio (SNR) region, cooperation is rarely required; hence, the spectral efficiency of the cooperative protocol can be improved by applying a proper cooperation selection technique. In this paper, we present a simple "cooperation selection" technique based on instantaneous channel measurement to improve the spectral efficiency of cooperative protocols. We show that the same instantaneous channel measurement can also be used for relay selection. In this paper two protocols are proposed-proactive and reactive; the selection of one of these protocols depends on whether the decision of cooperation selection is made before or after the transmission of the source. These protocols can successfully select cooperation along with the best relay from a set of available M relays. If the instantaneous source-to-destination channel is strong enough to support the system requirements, then the source simply transmits to the destination as a noncooperative direct transmission; otherwise, a cooperative transmission with the help of the selected best relay is chosen by the system. Analysis and simulation results show that these protocols can achieve higher order diversity with improved spectral efficiency, i.e., a higher diversity-multiplexing tradeoff in a slow-fading environment.

CooRP: A Cooperative Routing Protocol in Mobile Ad-hoc Wireless Sensor Networks (CooRP: 모바일 Ad-hoc 무선 센서 네트워크에서 협력 라우팅 프로토콜)

  • An, Beong-Ku;Lee, Joo-Sang;Kim, Nam-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • In this paper, In this paper, we propose a Cooperative Routing Protocol (CooRP) for supporting network convergence and transmission services efficiently in mobile ad-hoc wireless sensor networks with Rayleigh fading environments. The main contributions and features of this paper are as follows. First, the routing routes are decided on route stability based on entropy concepts using mobility of nodes within the direction guided line region to increase the operational lifetime of routes as well as reduce control overhead for route construction. Second, a cooperative data transmission strategy based on the constructed stable routing route is used to increase packet delivery ratio with advanced SNR. Third, a theoretical analysis for cooperative data transmission of the proposed CooRP with outage probability is presented. The performance evaluation of the proposed CooRP is performed via simulation using OPNET and analysis. The results of performance evaluation show that the proposed CooRP by using stable routing routes and cooperative transmission can increase packet delivery ratio efficiently.

Optimal Cooperation and Transmission in Cooperative Spectrum Sensing for Cognitive Radio

  • Zhang, Xian;Wu, Qihui;Li, Xiaoqiang;Yun, Zi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.184-201
    • /
    • 2013
  • In this paper, we study the problem of designing the power and number of cooperative node (CN) in the cooperation phase to maximize the average throughput for secondary user (SU), under the constraint of the total cooperation and transmission power. We first investigate the scheme of cooperative spectrum sensing without a separated control channel. Then, we prove that there indeed exist an optimal CN power when the number of CNs is fixed and an optimal CN number when CN power is fixed. The case without the constraints of the power and number of CN is also studied. Finally, numerical results demonstrate the characteristics and existences of optimal CN power and number. Meanwhile, Monte Carlo simulation results match to the theoretical results well.