• Title/Summary/Keyword: cooperative robot

Search Result 170, Processing Time 0.033 seconds

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

Implementation of a Graphic Man-Machine Interface for a Teleoperation of Multiple Mobile Robots (다수 이동로봇의 원격제어를 위한 Graphic Man-Machine Interface의 구현)

  • 김한영;한헌수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.712-715
    • /
    • 1999
  • The goal of this paper is to provide a Graphic man-machine interface that can be used to control multiple robots simultaneously. The proposed GUI scheme gave emphasis on making multiple robots Perform the cooperative works, maintaining a given formation. It controls multiple robots in two different modes. : a group mode and a individual mode. In the group mode, a common goal position and formation are delivered to individual robots at the same time, and in the individual mode one robot is selected. o increase the efficiency of the interface, a time scheduler is provided. The experimental results are included.

  • PDF

Stochastic Initial States Randomization Method for Robust Knowledge Transfer in Multi-Agent Reinforcement Learning (멀티에이전트 강화학습에서 견고한 지식 전이를 위한 확률적 초기 상태 랜덤화 기법 연구)

  • Dohyun Kim;Jungho Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.474-484
    • /
    • 2024
  • Reinforcement learning, which are also studied in the field of defense, face the problem of sample efficiency, which requires a large amount of data to train. Transfer learning has been introduced to address this problem, but its effectiveness is sometimes marginal because the model does not effectively leverage prior knowledge. In this study, we propose a stochastic initial state randomization(SISR) method to enable robust knowledge transfer that promote generalized and sufficient knowledge transfer. We developed a simulation environment involving a cooperative robot transportation task. Experimental results show that successful tasks are achieved when SISR is applied, while tasks fail when SISR is not applied. We also analyzed how the amount of state information collected by the agents changes with the application of SISR.

Development of Curriculum Using ROBOTC-based LEGO MINDSTORMS NXT and Analysis of Its Educational Effects (ROBOTC기반 LEGO MINDSTORMS NXT 로봇을 이용한 교육과정 개발 및 교육효과 분석)

  • Lee, Kyung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.18A no.5
    • /
    • pp.165-176
    • /
    • 2011
  • In this paper, we show how a curriculum using LEGO MINDSTORMS NXT robot based ROBOTC for undergraduate students has been developed, and we analyze the educational effect of the curriculum. The curriculum is composed of basic knowledge learning, practice with basic robots, practice with advanced robots, and creative design and implementation of robots. During the three year period since 2009, educational achievement has been analyzed by surveys for 6 classes, 94 students. According to the analysis, the curriculum has highly motivated the students and made them to achieve effectively our educational and academic goals. Also, we observe that the curriculum helped the students to improve their creativity and the problem solving skill, and that the students were autonomously and deeply involved in the homework and the term projects, which made them be very cooperative. Finally, the intensive practice with ROBOTC programming is shown to help students to improve their programming ability of C language.

A Study on a Real-Time Aerial Image-Based UAV-USV Cooperative Guidance and Control Algorithm (실시간 항공영상 기반 UAV-USV 간 협응 유도·제어 알고리즘 개발)

  • Do-Kyun Kim;Jeong-Hyeon Kim;Hui-Hun Son;Si-Woong Choi;Dong-Han Kim;Chan Young Yeo;Jong-Yong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.5
    • /
    • pp.324-333
    • /
    • 2024
  • This paper focuses on the cooperation between Unmanned Aerial Vehicle (UAV) and Unmanned Surface Vessel (USV). It aims to develop efficient guidance and control algorithms for USV based on obstacle identification and path planning from aerial images captured by UAV. Various obstacle scenarios were implemented using the Robot Operating System (ROS) and the Gazebo simulation environment. The aerial images transmitted in real-time from UAV to USV are processed using the computer vision-based deep learning model, You Only Look Once (YOLO), to classify and recognize elements such as the water surface, obstacles, and ships. The recognized data is used to create a two-dimensional grid map. Algorithms such as A* and Rapidly-exploring Random Tree star (RRT*) were used for path planning. This process enhances the guidance and control strategies within the UAV-USV collaborative system, especially improving the navigational capabilities of the USV in complex and dynamic environments. This research offers significant insights into obstacle avoidance and path planning in maritime environments and proposes new directions for the integrated operation of UAV and USV.

Development Fundamental Technologies for the Multi-Scale Mass-Deployable Cooperative Robots (멀티 스케일 다중 전개형 협업 로봇을 위한 요소 기술 개발)

  • Chu, Chong Nam;Kim, Haan;Kim, Jeongryul;Song, Sung-Hyuk;Koh, Je-Sung;Huh, Sungju;Ha, ChangSu;Kim, Jong Won;Ahn, Sung-Hoon;Cho, Kyu-Jin;Hong, Seong Soo;Lee, Dong Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • 'Multi-scale mass-deployable cooperative robots' is a next generation robotics paradigm where a large number of robots that vary in size cooperate in a hierarchical fashion to collect information in various environments. While this paradigm can exhibit the effective solution for exploration of the wide area consisting of various types of terrain, its technical maturity is still in its infant state and many technical hurdles should be resolved to realize this paradigm. In this paper, we propose to develop new design and manufacturing methodologies for the multi-scale mass-deployable cooperative robots. In doing so, we present various fundamental technologies in four different research fields. (1) Adaptable design methods consist of compliant mechanisms and hierarchical structures which provide robots with a unified way to overcome various and irregular terrains. (2) Soft composite materials realize the compliancy in these structures. (3) Multi-scale integrative manufacturing techniques are convergence of traditional methods for producing various sized robots assembled by such materials. Finally, (4) the control and communication techniques for the massive swarm robot systems enable multiple functionally simple robots to accomplish the complex job by effective job distribution.

Distributed Autonomous Robotic System based on Artificial Immune system and Distributed Genetic Algorithm (인공 면역 시스템과 분산 유전자 알고리즘에 기반한 자율 분산 로봇 시스템)

  • Sim, Kwee-Bo;Hwang, Chul-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System(AIS) based on Artificial Immune System(AIS) and Distributed Genetic Algorithm(DGA). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: dispersion and aggregation. AIS decides one among above two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the DGA in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

Development of Distributed Autonomous Robotic Systerrt Based on Classifier System and Artificial Immune Network (분류자 시스템과 인공면역네트워크를 이용한 자율 분산 로봇시스템 개발)

  • Sim, Kwee-Bo;Hwang, Chul-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.699-704
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System(DARS) based on an Artificial Immune System(AIS) and a Classifier System(CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIS decides one among these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

Positioning and Driving Control of Fork-type Automatic Guided Vehicle With Laser Navigation

  • Kim, Jaeyong;Cho, Hyunhak;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • We designed and implemented a fork-type automatic guided vehicle (AGV) with a laser guidance system. Most previous AGVs have used two types of guidance systems: magnetgyro and wire guidance. However, these guidance systems have high costs, are difficult to maintain with changes in the operating environment, and can drive only a pre-determined path with installed sensors. A laser guidance system was developed for addressing these issues, but limitations including slow response time and low accuracy remain. We present a laser guidance system and control system for AGVs with laser navigation. For analyzing the performance of the proposed system, we designed and built a fork-type AGV, and performed repetitions of our experiments under the same working conditions. The results show an average positioning error of 51.76 mm between the simulated driving path and the driving path of the actual fork-type AGV. Consequently, we verified that the proposed method is effective and suitable for use in actual AGVs.

A Collaborative Technology of Intelligent Mobile Robots for Reliable Emergency Alert Broadcast (신뢰성 있는 재난경보 방송을 위한 지능형 이동 로봇의 협업 기법)

  • Chang, Sekchin;Lee, Yong-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.395-400
    • /
    • 2019
  • The CBS and the AEAS functionalities are defined in cellular systems and T-DMB systems, respectively. In the case that communication facilities are disabled in indoor environments, it is impossible for the residents to receive the emergency messages. In this paper, a novel collaborative technology of intelligent mobile robots is proposed, which relies on cooperative communications among the intelligent mobile robots. In order to improve the performance, the intelligent mobile robots exploit their location information. Simulation results confirm that the proposed method is very suitable for reliable emergency alert broadcast.