• Title/Summary/Keyword: cooling stop temperature

Search Result 13, Processing Time 0.03 seconds

CSTC of High Strength Steel for ROT Process in Hot Strip Mills (열간압연 ROT에서 고강도강의 CSTC 개발)

  • Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.191-196
    • /
    • 2008
  • This paper proposes a cooling stop temperature control(CSTC) concept which aims at obtaining the uniform temperature and quality of the material along the longitudinal and lateral direction of the strip. The CSTC is designed using the experimental CCT(Continuous Cooling Transformation), TTT(Time Temperature Transformation) curves and the temperature control model by the heat transfer governing equation, and the temperature control simulator. The cooling pattern and the rolling speed can be solved by the CSTC. It is shown through the field test of the hot strip mill of POSCO that the phase transformation ratio of the high carbon steel is considerably improved by the proposed temperature control.

Temperature and Property Control of High Strength Steel in Hot Strip Mills (열간압연 고강도강의 온도 및 재질제어)

  • Park, Cheol-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.817-823
    • /
    • 2011
  • This paper proposes a cooling stop temperature control(CST) and a phase transformation control(PTR) which aim at obtaining the uniform temperature and quality along the longitudinal direction of the high strength steel on the run-out table(ROT) process. The problems of the temperature control are analyzed for the conventional steel and the new control concepts are derived from a time-temperature transformation(TTT) diagram. The proposed control technologies are verified from the simulation results under the temperature prediction model by the heat transfer governing equation, and the temperature estimation simulator. It is shown through the field test of the hot strip mills that the phase transformation ratio of the high strength steel is considerably improved by the proposed temperature controls.

HEN Simulation of a Controlled Fluid Flow-Based Neural Cooling Probe Used for the Treatment of Focal and Spontaneous Epilepsy

  • Mohy-Ud-Din, Zia;Woo, Sang-Hyo;Qun, Wei;Kim, Jee-Hyum;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Brain disorders such as epilepsy is a condition that affects an estimated 2.7 million Americans, 50,000,000 worldwide, approximately 200,000 new cases of epilepsy are diagnosed each year. Of the major chronic medical conditions, epilepsy is among the least understood. Scientists are conducting research to determine appropriate treatments, such as the use of drugs, vagus nerve stimulation, brain stimulation, and Peltier chip-based focal cooling. However, brain stimulation and Peltier chip-based stimulation processes cannot effectively stop seizures. This paper presents simulation of a novel heat enchanger network(HEN) technique designed to stop seizures by using a neural cooling probe to stop focal and spontaneous seizures by cooling the brain. The designed probe was composed of a U-shaped tube through which cold fluid flowed in order to reduce the temperature of the brain. The simulation results demonstrated that the neural probe could cool a 7 $mm^2$ area of the brain when the fluid was flowing atb a velocity of 0.55 m/s. It also showed that the neural cooling probe required 23 % less energy to produce cooling when compared to the Peltier chip-based cooling system.

A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System (가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰)

  • Yu, Won-Ju;Lee, Seong-Hyun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.81-95
    • /
    • 2010
  • Gas turbines generating power operate in high temperature condition and use natural gas as fuel. For that reason, there are many cases where damage is done to the hot gas parts caused by the high temperature and many accidents occur like gas explosions, then various efforts are needed to maintain the hot gas parts and prevent accidents. It is difficult to find the root causes of damage to the hot gas parts from the gas explosion caused by gas leakage through rotor cooling air line from fuel gas heat exchanger during the shut down. To prevent gas turbine from damage, removal of gas leakage inside of gas turbine is required by purging the turbine before firing, improving the fuel gas heating system and installing alarm systems for detecting gas leakage from stop valve to turbine while the gas turbine has shut down.

  • PDF

A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System (가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰)

  • Yu, Won-Ju;Lee, Seong-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • Gas turbines for power generating operate in a very high temperature condition and use natural gas for fuel. For this reason, many cases of damage happen at hot gas parts which are severely affected by high temperature gas and many cases of explosion occur by fuel gas. So a lot of efforts should be made to prevent hot gas parts damage and gas explosion accidents. Though there are many damage cases and explosion accidents, it is very difficult to find out the root causes of hot gas parts damage caused by gas explosion due to gas leakage in the heat exchanger for air cooling and gas heating. To prevent gas turbine from damage caused by gas explosion, removal of leakage gas from gas turbine is inevitably required before firing the gas turbine and installing alarm systems is also required for detecting gas leakage at stop valve to turbine while shut down.

FIND THE ROOT CAUSE OF WELDING-INDUCED DISTORTION BY NUMERICAL MODELING METHOD

  • Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.681-687
    • /
    • 2002
  • The cumulative, shrinkage plastic strains and their distributions in the weld joint after completion of the welding process determine welding-induced distortion. Although the weldment undergoes many complex physical and metallurgical changes during welding, only the material plastic temperature range and its cooling history below this temperature range influence the [mal state of the cumulative shrinkage plastic strains. In addition, for structural welds, these plastic strains are uniform, except in the arc start and stop regions, along the weld. Therefore, the plastic strain-based "inherent shrinkage model" is effective and accurate to describe welding-induced distortion. This paper presents the theoretical background and numerical verification of this root cause.

  • PDF

Physiological Response of parrot fish (Oplegnathus fasciantus) and bivalve (Gomphina melanaegis) by Lowing Water Temperature Exposure (저수온 노출에 따른 돌돔(Oplegnathus fasciantus)과 민들조개(Gomphina melanaegis)의 생리활성 변화 연구)

  • YOON, Sung Jin;CHIN, Byung Sun;PARK, Gyung Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Physiological response of fish and bivalve was estimated to identify the physiological changes of test species by lowering water temperature due to the abrupt stop of cooling water discharge from power plant. The experiment was conducted by two conditions; fall and winter by decreasing water temperature ($2^{\circ}C$/2 days) from $26^{\circ}C$ to $17^{\circ}C$ for fall scenario and from $15^{\circ}C$ to $9^{\circ}C$ for winter scenario, respectively. Test organisms were parrot fish (Oplegnathus fasciantus) and bivalve (Gomphina melanaegis), and end points were mortality for both species, hematocrit and cortisol for fish, and hemolymph and superoxide dismutase(SOD) for bivalve. 48/96hr mortality test revealed no mortality for fish and 47% mortality for bivalve at 96hr/$26^{\circ}C$ only. Significant increases of hematocrit and cortisol were found at fishes exposed to $26^{\circ}C$ (high temperature) and lower temperature ($9{\sim}13^{\circ}C$), respectively. Hemolymph and SOD for bivalve tended to decrease by lowering water temperature from 15 to $9^{\circ}C$ (winter scenario) and no changes from 26 to $17^{\circ}C$ (fall scenario). Fall scenario (from 15 to $9^{\circ}C$) showed more significant changes of physiological response than winter cases (26 to $17^{\circ}C$).

A Study on the Thermo-flow Analysis of ISG (Integrated Starter and Generator) Driving Inverter (ISG 구동용 인버터의 열유동 해석에 관한 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.145-150
    • /
    • 2013
  • Recently, many vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. ISG (integrated starter & generator) is one of main electric parts and can improve fuel efficiency by using idle stop & go function and regenerative braking system. However, if ISG driving inverter works under the continuously high load condition, it will make the performance and durability of the inverter decreased with rising temperature. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the inverter. As a result, we found the MOSFET of the air cooled inverter was increased up to $116^{\circ}C$ over the limit temperature. On the other hand, the liquid cooled type inverter's MOSFET was decreased by about $17^{\circ}C$ compared to that of the air cooled inverter. Therefore, we verified the feasibility of the liquid cooled type using the present cooling structure.

Study on the energy-saving constant temperature and humidity machine operating characteristics (에너지 절감형 항온항습기 운전 특성에 관한 연구)

  • Cha, Insu;Ha, Minho;Jung, Gyeonghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2016
  • The heat recovery system that was applied in this study, is the energy-saving type that can produce the maximum cooling capacity less power in use. In order to have a more precise control function the temperature and humidity of the constant temperature and humidity machine, control algorithm is applied to designed a fuzzy PID controller, and the outside air compensation device (air-cooled) demonstrated excellent ability to dehumidify the moisture, $-20^{\circ}C$ in winter. High efficiency and the low-noise type sirocco fan operate quitely and designed to fit the bottom-up and top-down in accordance with the characteristics of equipment. as a result of experiment data, the conversion efficiency is 95% or more, power recovery time is within 5sec, stop delay time is within 30sec, pump down time is 10sec, pump delay time is 5sec, heating delay time is 5sec, temperature deviation is ${\pm}2^{\circ}C$ (cooling deviation: $2^{\circ}C$, Heating deviation : $2^{\circ}C$), humidity deviation is a ${\pm}5%$ (humidification deviation 3.0%, dehumidification deviation 3.0%). Recently, ubiquitous technology is important. so, the constant temperature and humidity machine designed to be able to remotely control to via the mobile phone, and more scalable to support MMI software and automatic interface. Further, the life of the parts and equipment is extended by the failure.

Development of Cooling and Heating Bench System with Improved User Convenience for Smart City (사용자 편의성을 향상시킨 스마트 시티용 냉·온열 벤치 시스템 개발)

  • Jun Lee;Seung-Yong Oh;Tae-Kyu Kwon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.23-31
    • /
    • 2023
  • In this study, a smart bench was developed and researched smart benches that can contribute to user convenience and satisfaction by installing them in parks, bus stops, and tourist attractions in line with the rapidly changing construction of smart cities. The smart bench is automatically operated by the control system according to the external temperature and provides additional functions such as charging, lighting, and advertising to improve general bench functions as well as heating in winter and cooling in summer, making it suitable for smart urbanization. The developed smart bench is designed to be strong enough to withstand loads of about 2,500 N. It minimizes the visible parts such as assembled bolts and 220V power supply wires, It can also give aesthetic effects. The development was carried out with the aim of waterproofing and dustproofing of IP44 grade in accordance with the climate of Republic of Korea, which has four seasons, and it is advantageous for long-term use because the paint was selected for the weather ability (discoloration) grade 3 or higher. If smart bench is commercialized, it is believed that various options can be provided to the smart bench market, where buyers had few product options, as the parts were developed in an assembled type so that all functions can be responded in an optional form according to the installation environment and the buyer's budget.