• Title/Summary/Keyword: cooling source

검색결과 635건 처리시간 0.031초

설계 파라미터 변경에 의한 고속 버스용 엔진 냉각 홴의 저소음화 연구 (A Study on the Noise Reduction of the Engine Cooing Fan of a Express Bus by Modification of Design Parameters)

  • 이유엽;조용구;이충휘;오재응
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.258-265
    • /
    • 2003
  • This paper suggests the noise reduction method of the engine cooling fan. The fan noise contribution to the OASPL of engine room was estimated and the noise source was identified for the rotating fan by sound intensity method. And the program for Predicting the noise spectrum of axial flow fan was also developed. The radiated acoustic pressure is expressed in terms of discrete frequency noise Peaks at BPF and its harmonics and the line spectrum at the broad band by the proposed noise generation mechanisms. In this Paper, it Is shown that the comparison of the measured and calculated noise spectra of fan validates the noise predicting program. And this paper presents the characteristics of the fan noise in order to modify the design parameters. Accordingly, the design parameters were determined for the noise reduction of the fan.

소형 HTS SMES와 실시간 전력계통 시뮬레이터의 연계 알고리즘 제안 (Connection Algorithm Proposal of Real Time Digital Simulator with Miniaturized HTS SMES)

  • 김아롱;김경훈;김광민;박민원;유인근;심기덕;김석호;성기철;박영일
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.96-101
    • /
    • 2010
  • Superconducting Magnetic Energy Storage (SMES) system is one of the key technologies to overcome the voltage sag, swell, interruption and frequency fluctuation by fast response speed of current charge and discharge. In order to evaluate the characteristics of over mega joule class grid connected High Temperature Superconducting (HTS) SMES system, the authors proposed an algorithm by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the proposed algorithm, users can perform the simulation of voltage sag and frequency stabilization with a real SMES coil in real time and easily change the capacity of SMES system as much as they need. To demonstrate the algorithm, real charge and discharge circuit and active load were manufactured and experimented. The results show that the current from real system was well amplified and applied to the current source of simulation circuit in real time.

고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어 (Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System)

  • 조성준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

히트펌프 시스템의 시설원예 적용에 관한 실험적 연구 (An Experimental Study on Applying Heat Pump System to Facility Horticulture House)

  • 김재돌
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.88-94
    • /
    • 2013
  • As the results of analysis that are applying a heat pump using underground water as heat source of facility horticulture house, temperature change in house, growth of cultivated plants and the crop characteristic, the conclusion can be acquired as follows. It was possible to maintain the chamber temperature through operating heat pump with setting goal temperature at $16^{\circ}C$ and temperature variation at ${\pm}3^{\circ}C$. And cooling and heating coefficient of performance in heat pump system are different from setting room temperature and operation condition of equipment, totally in case that the setting temperature in house is low, the coefficient of performance and the in case that temperature departure is low. In case that the house does not heated, the result of the growth characteristic of cucumber planted last 50days is that cucumber grown in house equipped with heat pump is the most favorable growth characteristic due to maintaining a constant room temperature. After 90 days, the quantity and weight cucumber harvested in each house are averagely 9.8%, 13.1% increase and more heavy weight respectively. So it is researched that crop characteristic is superior.

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

터널 라이닝 내부에 설치한 열교환기의 현장모니터링 연구 (Study on long-term monitoring of heat exchanger installed in the tunnel lining)

  • 이철호;박문서;최항석;손병후;정재형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.195.1-195.1
    • /
    • 2011
  • This paper presents an experimental study on a new potential geothermal energy source obtained from tunnel structures. An "energy textile", which is a textile-type ground heat exchanger, was fabricated between a shotcrete layer and a guided drainage geotextile in the tunnel lining system. To examine the long-term thermal behavior of the energy textile, the difference in temperatures of the inlet and outlet fluid circulating through the heat exchange pipe within the energy textile was monitored using a constant-temperature water bath. Daily heat exchange rate of the energy textile during cooling operation was estimated from the measured temperatures of the inlet and outlet fluid through the energy textile. The air and ground temperature was also continuously monitored. The operation of the energy textile as a ground heat exchanger was simulated using a 3D numerical CFD model (Fluent). The thermal conductivity of shotcrete and concrete lining components and temperature variation of air in the tunnel were incorporated in the model. The numerical analysis shows a good agreement with the long-term monitoring result.

  • PDF

히트펌프용 수직형 지중열교환기의 성능에 관한 연구 (A Study on Performance of Vertical Ground Heat Exchanger for Heat Pump)

  • 장기창;정민호;윤형기;나호상;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.466-469
    • /
    • 2007
  • Heat pumps are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating mode and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal type and vertical type according to the installation method. A horizontal type means that a heat exchanger is laid in the trench bored in 1.2 to 1.8 m depth. And a vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double n-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성 (Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water)

  • 우병철;이희웅;서창민
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

전문 ESCO 지정제 평가방안 연구 (A Study on the Evaluation Method for Professional ESCO)

  • 임기추
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.90-95
    • /
    • 2013
  • 기술 중심의 ESCO 전문화를 위한 전문 ESCO 지정제 평가기준 마련이 요청되어 왔다. 이에, 본 연구는 전문 ESCO 지정제도에 관한 평가기준을 설정하기 위해 5가지 목적을 전제하였다. 즉, 에너지 절감의 우수성, 경영지표의 건전성, 고객만족도, 원천기술 보유업체의 참여 유도, 절약성과 보증계약 중시 등이다. 이를 바탕으로 전문가 자문을 통해 전문 ESCO 지정을 위한 평가배점(안)을 전문성(40점), 경영상태(15점), 고객만족도(20점), 기술능력(25점) 등 평가지표로 구성하고, 각각 세부 평가항목의 선정 및 배점기준을 설정하였다. ESCO 업계 설문조사를 통해 비교적 높은 동의율을 보였다. 전문 ESCO 지정제도의 적용 시 기업규모를 중소기업으로 한정하고 적용기술 대상을 조명, 열병합발전, 공정개선, 폐열회수, 냉 난방설비 등 5개의 특정 기술분야로 지정하는 것이 가능할 것이다.

Modulus of elasticity of concretes produced with basaltic aggregate

  • Maia, Lino;Aslani, Farhad
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.129-140
    • /
    • 2016
  • Basalt is a type of volcanic rocks, grey to black in colour, contains less than 20% quartz, 10% feldspathoid, and at least 65% of the feldspar of its volume. Basalt is considered an igneous rock with fine grains due to the rapid cooling of lava. Basaltic rocks have been widely used as aggregate for various purposes. The study presented in this paper was carried out on basalts that are widespread in the Madeira Island of Portugal and that comprise the major source of local crushed rock aggregates. This paper discusses an experimental programme that was carried out to study the effects of basaltic aggregate on the compressive strength and modulus of elasticity of concrete. For this purpose, cylinder specimens with $150{\times}300mm$ dimensions and prism specimens with $150{\times}150{\times}375mm$ dimensions were cast. The experimental programme was carried out with several concrete compositions belonging to strength classes C20/25, C25/30, C30/37, C40/50 and C60/75. The Eurocode 2 indicates the modulus of elasticity should be 20% higher when the aggregates are of basaltic origin, however results showed significant differences and a correction is proposed.