• 제목/요약/키워드: cooling source

검색결과 635건 처리시간 0.021초

병원 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구 (Study on the Simulation of Heat Pump Heating and Cooling Systems to Hospital Building)

  • 최영돈;한성호;조성환;김두성;엄철준
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.275-282
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.

Cavity내의 단일 열원에 대한 최적 열적설계 (Optimal Thermal Design of a Single Heat Source in a Cavity)

  • 예용택;추홍록;김현우
    • 태양에너지
    • /
    • 제19권1호
    • /
    • pp.77-86
    • /
    • 1999
  • The optimal thermal design of a single heat source on one wall of a vertical open top cavity was studied experimentally. The temperature and flow fields in the cavity were visualized. The objectives of this study is to obtain the best location of the single heat source and to examine the effects of heat source protrusion, substrate thermal conductivity and cavity aspect ratio on the natural convection cooling due to a single heat source. As the results, the cooling effect for the copper substrate is superior to that of the epoxy-resin substrate and is improved with increasing cavity width. For the epoxy-resin substrate of lower conductivity, the protrusion of the heaters plays a role in decreasing the cooling effect. The best location was the mid-height of the substrate.

  • PDF

물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구 (Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System)

  • 홍부표;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험 (Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates)

  • 심규호;김민기;이윤표;장선준
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

숙박업소 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구 (Study on the Simulation of Heat Pump Heating and Cooling Systems to Resident Building)

  • 최영돈;한성호;조성환;김주성;엄철준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.915-920
    • /
    • 2006
  • Recently available heat pump system by using air heat-source is not efficient. Because the mean temperature of korean winter season is low, economy of air heat-source heat pump descend, and COP is below 3.0. This paper was practiced the simulation on evaluation criteria for heat pump heating and cooling systems to resident building. As a result, heating and cooling composition heat pump system apply to the building needed to be provided heat source for 24 hours.

  • PDF

박판의 이중 빔 레이저 용접에서 열유동 해석에 관한 연구 (A Study on Thermal Analysis of Dual Beam Laser Welding of Thin Metal Sheet)

  • 김재웅
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.99-108
    • /
    • 1997
  • Analytical model for the temperature distribution and the cooling rate of weld in dual beam laser welding is presented for investigating the possibility of controling the cooling rate. The model is based on the solutions to the problem of heat flow due to the distributed and line heat sources for preheating and welding respectively in plates with finite thickness. The effects of beam power, beam distribution parameter, interbeam distance, and welding speed on the resulting temperature distribution and cooling rate are presented. The cooling rates of dual beam laser weld at the weld centerline under the investigated conditions are reduced to as one third of those of welds which were produced by single beam laser. And it appeared that the cooling rate of dual beam laser weld is strongly dependent on the process parameters of preheating laser beam power and welding speed.

  • PDF

외기조건에 따른 제습냉방시스템의 성능 특성 (Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions)

  • 이대영;장영수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF

TMA-물계 포접화합물의 과냉각 억제에 대한 연구 II (A Study on Supercooling Repression of TMA-Water Clathrate Compound II)

  • 김창오;김진흥;정낙규
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2006년도 에너지.가스.기후변화학회 연합춘계학술대회 및 특별심포지움
    • /
    • pp.317-324
    • /
    • 2006
  • This study aims to find out cooling characteristics of TMA(Tri-Methyl-Amine, ($CH_{3})_{3}N$) 25wt%-clathrate compound with ethanol($CH_{3}CH_{2}OH$) such as supercooling, phase change temperature and specific heat. For this purpose, ethanol is added as per weight concentration and cooling experiment is performed at $-6{\sim}-8^{\circ}C$, cooling heat source temperature, and it leads the following result. (1) Phase change temperature is decreased due to freezing point depression phenomenon. Especially, it is minimized as $3.8^{\circ}C$ according to cooling source temperature in case that 0.5w% of ethanol is added. (2) If 0.5wt% of ethanol is added, average supercooling degree is $0.9^{\circ}C $ and minimum supercooling is $0.8,\;0.7^{\circ}C$ according to cooling heat source temperature. The restraint effect of supercooling is shown. (3) Specific heat shows tendency to decrease if ethanol is added. It is $3.013{\sim}3.048\;kJ/kgK$ according to cooling heat source temperature if 0.5wt% of ethanol is added. Phase change temperature higher than that of water and inhibitory effect against supercooling can be confirmed through experimental study on cooling characteristics of TMA 25wt%-water clathrate compound by adding additive, ethanol. This can lead to shorten refrigerator operation time of low temperature thermal storage system and improve COP of refrigerator and efficiency of overall system. Therefore energy can be saved and efficiency can be improved much more.

  • PDF

해수열원 및 폐열이용 고성능 열펌프 시스템 성능실험 (Performance Test for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.979-986
    • /
    • 2003
  • The performance characteristics of heating and cooling operation for a heat pump system using seawater heat source and exhaust energy are presented. The heat pump system is made of a waste heat recovery system and a vapor compression refrigeration system. The working fluid is R-22. The heat pump system COPs are measured during heating and cooling operation modes, and the resultant COPs were 9.7 and 7.9, respectively, which are three times higher than those of the heat pump itself. Therefore, the performance of the heat pump system using exhaust energy is excellent compared to that of a general heat pump. The experimental data can be effectively used for the design of the high efficient heat pump using a seawater heat source.

하천수 열원 이용 열펌프 시스템의 LCC 분석 (LCC Analysis of a Heat Pump System Using River Water)

  • 한상수;박차식;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1424-1428
    • /
    • 2009
  • The performance of a heat pump using river water as a heat source was compared with that of a conventional air-conditioner for cooling and a boiler system for heating. The heat pump system using river water considered the 1-stage cycle for cooling and the 2-stage cycle for heating. The COPs of the river water source heat pump were $0.5{\sim}1.1$ higher than those of the conventional system in the cooling season. The LCC of the river water source heat pump system was lower 13.5% and 32.4% than that of the conventional system I and II. In addition, when the initial cost ratios of the river water source heat pump system to the conventional system I and II were less than 1.2 and 1.4, respectively, an acceptable payback was found to be less than 5 years.

  • PDF