• Title/Summary/Keyword: cooling rates

Search Result 507, Processing Time 0.03 seconds

Observation of Water Level and Temperature Properties by using a Giant Magnetoresistance-Spin Valve Film

  • Choi, Jong-Gu;Park, Kwang-Jun;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.214-218
    • /
    • 2012
  • The water level and temperature properties for the cooling system of potassium titanyl phosphate laser systems were observed. The middle point of the GMR-SV magnetoresistance curve is set in the neighborhood of high magnetic sensitivity (2.8 %/Oe). The experimental results for resistance dependence on water height and temperature showed linear regions with rates of 0.4 ${\Omega}/mm$ and 0.1 ${\Omega}/^{\circ}C$, respectively. The proposed results were found to be for adjusting the water level and temperature in the laser cooling system.

A Study on the Distribution of Airflow and Temperature in a Data center under the Various Conditions of Heat Generation Rates of Server Computers (서버 컴퓨터의 발열량이 변화한 경우의 데이터센터 내의 기류 및 온도분포 특성에 대한 연구)

  • Chang, Hyun-Jae;Kim, Je-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.108-114
    • /
    • 2014
  • On a large scale of data center, heat generation rates from sever computers occupy almost the entire cooling load of the building, and it is gradually increasing. The efficiency of air distribution system in data centers can be affected by heat generation rates of server computers. In this study, the distributions of airflow and temperature in a data center have been investigated by CFD simulations under various conditions of heat generation rates for server computers. From the results, air around the cold aisle which has high temperature flows tremendously into the cold aisle according to the increase of heat generation rates for server computers and the air temperature in the cold aisle becomes higher. The SHI (supply heat index) and RHI (return temperature index) show almost similar values to the cases study because the air inflow rates to server computers increase with the heat generation rates of server computers.

A Non-Heating Small-Sclaed Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation (소형 비가열 실험을 이용한 원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1927-1932
    • /
    • 2004
  • A 1/21.6 scaled non-heating experimental facility was prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The behaviors of the air bubble-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the injected air flow rate and distribution. As the injected air flow rates increased, the natural circulation flow rates also increased. Both the longitudinal and the latitudinal distributions of the injected air affected the natural circulation flow rates, especially, the longitudinal effect is more larger.

  • PDF

Factors affecting on the Motility of Semen and the Pregnancy Rate of Artificial Insemination in Equine (말의 정액 형태에 따른 운동성과 인공수정 임신율에 영향을 미치는 요인)

  • Park, Yong-Soo;Cho, Gil-Jae
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • Research in the area of equine artificial insemination (AI) has led to its increased application in field trials. However, procedures for equine semen collection, cooling and freezing of semen and artificial insemination need further improvement. In experiment 1, we investigated the percentage of total motility (TM) and progressive motility (PM) of sperms at after-collection, cooled-diluted, cooled-transported or frozen-thawed semen. In experiment 2, mares were inseminated with either cooled-diluted, cooled-transported or frozen-thawed semen. In experiment 3, we examined the effect of buffer (skim-milk extender), which was infused into the uterus at the time of AI with frozen-thawed semen. In experiment 4, we compared AI pregnancy rates for mares ovulating spontaneously versus after treatment with hCG. In experiment 1, the average percentage of TM was decreased from 75.3% to 14.4% at the stage of after-collection to frozen-thawed semen (p<0.05). The average percentage of PM was 58.2% and 59.6% at after-collection and cooled-diluted, but it was significantly increased 71.7% after frozen-thawed (p<0.05). In experiment 2, the pregnancy rates after AI using cooled-diluted, cooled-transported and frozen-thawed semen were 60%, 50% and 37.5%, respectively, and similar among treatments. In experiment 3, the pregnancy rate of mares infused with buffer at AI was 40% which was higher than that with no buffer (10%). In experiment 4, the pregnancy rates of mares were similar between ovulated spontaneously (25%) and ovulated with hCG (50%). The results suggest that equine semen that has been cooled-diluted, cooled-transported or frozen can be successfully used to establish AI, pregnancy and foal production. Also, the pregnancy rates after AI can be increased by infusing buffer into the uterus at AI or by inducing ovulation with hCG, but further study is need.

Microstructure and Tensile Properties in Low Pressure Cast Al-Si Alloy through Cooling Rate Control

  • Suh, Jun-Young;Park, Sung Jin;Lee, Hee-Kwon;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • In this study, three kinds of metal chills such as SS400, AC4CH and brass, with different thicknesses of 40 ~ 80 mm, were applied for low pressure casting of Al-Si alloy to control cooling rate. The microstructural characteristics with increasing cooling rate were represented using factors including D1, D2, size of primary α phases and shape factor and size of eutectic Si. The tensile properties were investigated and additionally analyzed based on the microstructural characteristics. As the cooling rate increased, D1, D2, and sizes of primary α phases and eutectic Si apparently decreased and the shape factor of eutectic Si increased to over 0.8. The ultimate tensile strength (UTS) and yield strength (YS) increased with decreasing D1, D2, and size of primary α phases, while elongation increased with decreasing size of eutectic Si and concurrently increasing shape factor of eutectic Si. This indicated that the primary α phases and eutectic Si in Al-Si alloy were refined with increasing cooling rate, resulting in improvement of UTS and YS without sacrificing elongation. After the tensile test, preferential deformation of primary α phases was observed in the Al-Si alloy produced at higher cooling rates of more than 0.1 K/s.

The Design and Hot-firing tests of a Water-cooled High Pressure Sub-scale Combustor (물냉각 고압 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • A 3-tonf-class high pressure sub-scale combustor was designed and manufactured to study the performance improvement of combustor. The combustor consists of a combustion chamber with film cooling, thermal barrier coating and water cooling channels to prevent thermal demage of the hardware and an injector head with 37 coaxial swirl injectors. Hot-firing tests were carried out at the design point with varying flow rate for film cooling. The test result revealed that the increase of film cooling flow rate decreases the combustion performance, but in the cases of similar film cooling flow rates, the combustion performance is dependent on the mixture ratio of main injector excluding the film cooling flow rate.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

Evaluation of Microstructure and Mechanical Properties according to Cooling Method after Hot Forging of High Manganese Steel Flange (고망간강 플랜지의 열간 단조 후 냉각방법에 따른 미세조직 및 기계적 특성 평가)

  • Minha Park;Gang Ho Lee;Byung Jun Kim;Byoungkoo Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.44-54
    • /
    • 2024
  • High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.

Analysis of Heating and Cooling Load Profile According to the Window Retrofit in an Old School Building (노후 학교건물의 창호 교체에 따른 부하분석)

  • Lee, Ye Ji;Kim, Joo Wook;Song, Doo Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.455-462
    • /
    • 2017
  • The purpose of this study is to analyze heating and cooling load variation due to envelope retrofits in an old school building. In a previous study, envelope retrofit of an old school building resulted in annual energy consumption reduction. However, cooling energy consumption increased with the envelope retrofit. This is because of high internal heat generation rates in school buildings and internal heat cannot escape through windows or walls when the envelope's thermal performance improves. To clarify this assumption, thermal performance changes due to envelope retrofits were analyzed by simulation. Results revealed indoor temperature and inner window surface temperature increased with high insulation level of windows. Indoor heat loss through windows by conduction, convection and radiation decreased and resulted in an increase of cooling load in an old school building. From results of this study, energy saving impact of envelope retrofits in an old school building may not be significant because of high internal heat gain level in school buildings. In case of replacing windows in school buildings, local climate and internal heat gain level should be considered.

A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell (연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.