• 제목/요약/키워드: cooling power load

검색결과 236건 처리시간 0.025초

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

지진하중을 받는 원자력발전소용 냉각펌프의 내진해석 (Seismic Analysis of the Cooling Water Pump for Nuclear Power Plant for the Seismic Load)

  • 정철섭
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1239-1243
    • /
    • 2009
  • To evaluate the structural integrity of the nuclear seismic category penetration cooling water pump under the seismic service conditions the seismic analysis was performed in accordance with IEEE-STD-344 code. The finite element computer program, ANSYS, Version 10.0, is used to perform both a mode frequency analysis and an equivalent static seismic analysis of the pump assembly. The mode frequency analysis results show the fundamental natural frequency is greater than 33 Hz and does not exist in seismic range, thus justifying the use of the static analysis. The stresses resulted from various loadings and their combinations are within the allowable limits specified in the above mentioned IEEE code. The results of the seismic evaluation fully satisfied the structural acceptance criteria of the IEEE code. Accordingly the structural integrity on the pump assembly was proved.

대형디젤기관의 EGR에 의한 배기가스변화에 관한 실험적 연구 (An Experimental Study on Exhaust Gas Change of a Heavy-Duty Diesel Engine by EGR)

  • 오용석;문병철;한영출
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.59-64
    • /
    • 2002
  • The effects of EGR on emissions were investigated by using a six-cylinder, 8 litre, turbo-charged, heavy-duty diesel engine with a low pressure route EGR system. The experiments were performed at various engine loads while the EGR rates were set from 0% to 30%. Hot and cooled EGR are achieved without cooling and with cooling respectively. To verify the possibility of EGR technology for the applications, test were performed with steady state test cycle. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke and PM emissions. Increasing the EGR rate leads to deteriorating specific fuel consumption and power at lower speed and higher load. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar.

Subcooling Bypass Technology를 적용한 압축기 토출 냉매 온도 감소에 관한 연구 (A Study on the Decrease of Compressor Discharge Temperature Using Subcooling Bypass Technology)

  • 곽경민;배철호
    • 설비공학논문집
    • /
    • 제21권6호
    • /
    • pp.326-332
    • /
    • 2009
  • The purpose of the study is to decrease the refrigerant temperature at the outlet of the compressor under high thermal load conditions for air cooled vapor compression refrigeration system. The subcooling bypass line called subcooling bypass technology(SBT) is installed to the window type A/C system to investigate the performance test. The standard air calorimeter test method is applied to measure the refrigerant temperature at the outlet of the compressor, cooling capacity, power consumption, and system EER. The refrigerant temperature at the outlet of the compressor decreases as the bypass rate increases. When the bypass rate is 8.2%, the refrigerant temperature at the outlet of the compressor decreases $2.8^{\circ}C$ while the cooling capacity and EER are the same as the conventional A/C unit.

A Comparative Study of the Line Start Permanent Magnet, Skeleton Type Brushless DC, and Snail-earn Type Switched Reluctance Motor for Fans

  • Lee, Ji-Young;Lee, Geun-Ho;Hong, Jung-Pyo;Jin Hur
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권3호
    • /
    • pp.122-126
    • /
    • 2004
  • The objective of this paper is to provide a comparison between the Line Start Permanent Magnet, Skeleton type Brushless DC, and the Snail-cam type Switched Reluctance Motor. These motors are compared under the same load characteristic as the cooling fan motor of a refrigerator. The comparison consists of speed, output power, efficiency, copper loss, and cost for three different motors. For the given application, the results provide an indication of the best machine suited with respect to performance and cost.

통신기기 냉각용 하이브리드 냉방시스템의 성능특성 (Cooling Performance of a Hybrid Refrigeration System for Telecommunication Equipment)

  • 전종욱;김용찬;최종민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.489-494
    • /
    • 2006
  • Electronic and telecommunication industries are constantly trying to develop compact components having high power density. Therefore, a proper heat dissipation method is very important to allow reliable operation of the telecommunication equipment. In this study, a hybrid refrigeration system for a telecommunication equipment room was designed to save energy consumption and improve reliability of the compressor In addition, the performance of the hybrid refrigeration system was measured with a variation of outdoor load. The designed hybrid refrigeration system for the telecommunication equipment shelter saved the energy approximately 50%e at the mode switch temperature of $8.3^{\circ}C$.

  • PDF

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.

물받이를 이용한 유수발전장치의 설계 및 구현 (Design and Implementation of Fluid Flow Generation System by using Water Captures)

  • 손영대;정현석
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.413-421
    • /
    • 2012
  • This paper proposes the design and implementation of fluid flow generation system by using polypropylene(PP) water capture, which harvests electric energy from the kinetic energy of tidal current or water flow and drives the desired load, and applies it to the discharge drain of Hadong thermal power plant. This experimental system is composed of water captures, driving wheel, gear trains, 10[kW] synchronous generator, and three phase rectifying circuit which drives lamp load for test. The proposed water capturing system which is composed of water captures, rope and driving wheel, rotates as caterpillar according to water flow. This system is very easy to manufacture and more economical than another type of tidal current turbines such as conventional propeller and helical type. Also, we estimated the available fluid flow energy that can be extracted from the cooling water in discharge drain based on drain's cross-sectional area. Therefore, this paper confirms the validity of proposed fluid flow generation system with water captures and the possibility of its application for renewable energy generation in discharge drain of thermal power plant, from the obtained performance characteristic of this energy conversion system.

가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발 (A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study)

  • 유상석;이영덕;안국영
    • 대한기계학회논문집B
    • /
    • 제34권1호
    • /
    • pp.19-26
    • /
    • 2010
  • 이온교환막 연료전지는 전세계적인 에너지 고갈 문제와 온실효과에 대한 대응책의 하나이다. 특히, 이온교환막 연료전지는 전기화학반응에 의해 전기를 생산함과 동시에 열을 발생하기 때문에 가정용으로 적용하기에 적당하다. 가정용 연료전지의 열관리 목적은 연료전지가 최적조건에서 운전할 수 있도록 적절히 온도를 제어해 주는 것으로, 본 연구에서는 부하 변화 시 가정용 연료전지 시스템의 응답 특성과 열관리 특성을 알아보기 위한 해석 모델을 개발하였다. 열관리 해석 모델은 연료전지의 온도를 조절하기 위한 펌프와 열교환기로 구성된 1차측, 주택에 온수를 공급하기 위한 탱크와 펌프 계통의 2차 측으로 구성되었다. 부하를 순차적으로 증가시킬 때와 감소시킬 때를 구분하여 열관리 계통의 응답특성 을 확인하였다. 결과적으로 탱크의 초기 승온에 많은 시간이 소요되기 때문에 부하를 다단으로 오랜 시 간 동안 서서히 증가시키면서 시스템 응답 특성을 확인하였다. 또한, 본 연구에서는 가정용 연료전지의 부하 변화시의 열관리 특성을 고려한 운전 전략에 대해서도 조사하였다.

BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석 (Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation)

  • 이민형;이인복;하태환;김락우;여욱현;이상연;박관용;김준규
    • 생물환경조절학회지
    • /
    • 제26권4호
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.