• Title/Summary/Keyword: cooling fan

Search Result 437, Processing Time 0.022 seconds

Selection and Noise Evaluation Methods of the System Electronic Cooling Fan (시스템 전자 냉각 팬의 선정 및 소음 평가 기법)

  • Lee, Chan;Yun, Jae-Ho;Gwon, Oh-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.33-38
    • /
    • 2007
  • Fan selection procedure and fan noise evaluation method are presented for the system electronic cooling by combining FNM(Flow Network Model) and fan noise correlation model. Internal flow paths and distribution in electronic system we analyzed by using the FNM with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual test results.

Study on Low noise, High Performance Automobile Cooling Fan Development Using Freewake and CFD Analysis (자유후류법과 CFD 해석을 통한 저소음 고효율 자동차용 냉각팬 개발에 관한 연구)

  • ;;Renjing Cao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.847-847
    • /
    • 2004
  • Automobile cooling fans are operated with a radiator module. To design low noise, high performance cooling fan, radiator resistance should be considered in the design process. The system (radiator) resistance reduces axial velocity and increases effective angle of attack. This increasing effective angle of attack mechanism causes blade stall, performance decrease and noise increase. In this paper, To analyze fan performance, freewake and 3D CFD calculations are used To design high performance fan with consideration of system resistance, optimal twist concept is applied through momentum and blade element theory. To predict fan noise, empirical formula and acoustic analogy methods are used.

  • PDF

Heat Transfer from a Fan-Aluminum Foam Heat Sink Assembly for CPU Cooling (CPU 냉각을 위한 홴-발포알루미늄 방열기 조합의 열전달 특성)

  • Kim, Seo-Yeong;Lee, Myeong-Ho;Baek, Jin-Uk;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.417-422
    • /
    • 2002
  • The experiments have been carried out to evaluate the cooling performance of a fan-aluminum foam heat sink assembly in comparison with a conventional CPU cooler. In terms of the dimensionless surface temperature of the heater, the cooling performance of the aluminum foam heat sink is similar to that of the conventional one with much reduced weight. The optimum fin height is found to be strongly dependent on the fin height of the heat sink and flow characteristics of the cooling fan.

Effects of Inlet Vent Shape on Aerodynamic Performance of a Low-Voltage Electric Motor Cooling Fan (유입부 형상이 저전압 전동기 냉각홴의 공력성능에 미치는 영향)

  • Park, Jae-Min;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.42-49
    • /
    • 2016
  • Aerodynamic analysis of a low-voltage electric motor has been performed with various inlet vent shapes. Effects of inlet vent shape on aerodynamic performance of a motor cooling fan have been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The k-${\varepsilon}$ turbulence model was used for the analysis of turbulence. The finite volume method and unstructured tetrahedral grids were used in the numerical analysis. Optimal grid system in the computational domain was selected through a grid-dependency test. From the results of the flow analysis, considerable energy loss by flow separation was observed in the flow passage. It was found that mass flow rate through the cooling fan in the low-voltage motor can be increased by modifying the inlet vent shape. And, some inlet vent shapes were suggested to improve the aerodynamic performance of the motor cooling fan.

Surface Profile Measuring System for Axial Fan of Cooling Towers (냉각탑용 축류팬 형상 정밀도 측정 시스템)

  • Kang Jae-Gwan;Lee Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.151-158
    • /
    • 2005
  • An important component of a cooling tower is an axial fan, and there happens distortion in its shape which brings significant loss of efficiency. In this paper, a surface profile measuring system for large size axial fan of cooling towers is developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. The measuring data are compared to the design data to compute the distortion of the axial fans. Two types of errors, axial and twist errors, are used to represent the precision of axial fan distortion. Genetic algorithm is used to solve the optimization problem during computing the precision. Results are displayed three dimensionally in a solid-modeler as well as 2-D drawings to help users find it with ease.

A Numerical Analysis in Piezoelectric Fan Systems (압전세라믹 냉각팬에 대한 수치해석적 연구)

  • Park, Ji-Ho;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.994-1000
    • /
    • 2011
  • In this study, the piezoelectric fan cooling system is investigated. In order to find the proper geometry and configuration, the numerical model for the flow field and heat transfer investigation is used. A simplified nonlinear deformation model is employed for transient solutions of a piezoelectric fan with the dynamic mesh and user defined function capability. The results show that the cooling is most effective when the length of a piezoelectric fan is 5 cm and the cooling plate is 3 cm. The results can be used to develop a new design method of heat sink for piezoelectric fans.

Development and Analysis on Noise Characteristics of Low Noise Cooling Fan for an Alternator by Using Numerical Method (수치적 방법을 이용한 저소음 얼터네이터 냉각팬의 개발 및 소음 특성 분석)

  • Kim, Wook;Jeon, Wan-Ho;Hyun, Jae-Jin;Lim, Chul-Koo;Lee, Sung-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.608-609
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and FlowNoise S/W are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

Numerical Investigation of Performance Characteristics for Cooling Tower Axial Fans with Sweep (스윕을 가진 냉각탑용 축류홴의 성능 특성에 관한 수치해석적 연구)

  • Oh, K.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.31-37
    • /
    • 2009
  • The purpose of this numerical study was to investigate performance characteristics for cooling tower axial fans with sweep. Performance data for the fans with various sweep angles were obtained in terms of the setting angle at a constant flow rate. Viscous flow calculations were carried out to obtain Performance data of the total pressure rise and hydraulic efficiency. A solution of the Ffowcs Williams-Hawkings equations was used to calculate the sound pressure level at three times fan diameter away from the fan. The calculated performance data well represented performance characteristics of the cooling tower axial fan. The total pressure rise and hydraulic efficiency at the same setting angle decreased with sweep angle. Sound pressure level slightly decreased for the fan with a sweep angle of 10 degree. No significant effect of the sweep geometry was found on the sound pressure level.

  • PDF

DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD (수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계)

  • Kim, W.;Jeon, W.H.;Hyun, J.J.;Lim, C.K.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD (수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계)

  • Kim, W.;Jeon, W.H.;Hyun, J.J.;Lim, C.K.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF