• Title/Summary/Keyword: cooled structure

Search Result 213, Processing Time 0.025 seconds

Development of Buckwheat Bread: 3. Effects of the Thermal Process of Dough making on Baking Properties

  • Kim, Chang-Soon;Lee, Seung-A;Kim, Hyuk-Il
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.6-13
    • /
    • 1999
  • The quality of the buckwheat bread made with previously heated ($55^{\circ}C$) and cooled buckwheat flour 0dough with the addition of ascorbic acid(AA) or/and sodium stearoyl lactylate(SSL) was evaluated . With heat treatemtn , handling property of dough and grain of the bread crumb were markedly improved and stickiness of the dough decreased . The optimum resting time to produce the best loaf volume and grain was found to be 3hr for both unheated and heated doughs. Heat treated dough showed higher dough expansion rate during fermentation than unheated dough, even though heated dough had lower loaf volume, probably because of an improper oven spring. Increase in shortening of dough formula from 3% to 5% improved loaf volume without improvement of handling property. With the addition of 100 ppm AA or/and 0.5% SSL, loaf volume and crumb grain were improved for both unheated and heated doughs.Microscopic analysis of a mixed dough by scanning electron microscope (SEM) showed that heated dough had a continuous network whereas unheated dough was discontinuous. The addition of AA and SSL gave the dough a more continuous network whereas unheated dough was discontinuous . The addition of AA and SSL gave the dough a more continuous structure with strengthened strands or interactions between the starch granule and protein. Therefore, it appears that the presence of continuity in heated buckwheat breadwheat bread dough is related to the improved loaf volume and crumb grain without dough stickness.

  • PDF

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

Effects of Cr, Mo an B additions on the microstructure and mechanical properties of Fe-28at.%Al alloys (Fe-28at.%Al 합금의 미세조직과 기계적 성질에 미치는 Cr, Mo 및 B의 영향)

  • Choi, Dap-Chun;Lee, Yeon-O;Kim, Kwan-Hyu;Park, Eun-Sik;Lee, Ho-Jong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.469-476
    • /
    • 1995
  • The effects of Cr, Mo or B additions were investigated on $B2{\leftrightarrow}DO_3$ structural transition temperature $(T_C)$ and mechanical properties of Fe-28at.%Al. The raw materials were arc-melted in vacuum and then subjected to the following heat-treatments to maximize the $DO_3$ ordered structure : $1000^{\circ}C/7days$, slowly cooled to $500^{\circ}C$ and then held for 5 days. In the effect on the grain refinment, the addition of alloying element B was the most effective. The addition of Cr or Mo had little effect. When 1at.%Mo was added, $T_c$ increase about $30^{\circ}C$, but Cr had a very little effect on $T_c$. On the contrary, when B was added, $T_c$ was apt to come down minutely. In the additional effect of alloying element on the mechanical properties, Cr was apt to decrease the microvickers hardness and yield strength, Mo and B didn't have much effect. In the case of compressure strength test, the effect of the environment on the yield strength was contrary to the result of the tensile strength test.

  • PDF

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Characteristics of Hydration Heat Control of Mass Concrete using Pulsating Heat Pipe in the Winter Season (진동형 히트 파이프를 이용한 매스 콘크리트의 겨울철 수화열 제어 특성)

  • Yang, Tae-Jin;Kim, Jeung-Hoon;Youm, Chi-Sun;Kim, Myung-Sik;Kim, Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.169-174
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure, the heat of hydration may cause serious thermal cracking. This paper reports results of hydration heat control in mass concrete using the oscillating heat pipe. There were three RC box molds ($1.2m{\times}1.8m{\times}2.4m$) which were different from each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of 10 turns of serpentine type copper pipe whose outer and inner diameters were 4 and 2.8 mm respectively. The working fluid was R-22 and charging ratio was 40% by volume. The temperature of the concrete core was approximately $55^{\circ}C$ in the winter without pulsating heat pipe. For a concrete with pulsating heat pipe, however, the temperature difference with the outdoor one reduced up to $12^{\circ}C$. The index figure of crack was varied from 0.75 to 1.38.

Charge Transformation of CU-ions in CuxFe3-xO4 (χ=0.1, 0.2)

  • Lee, Choong Sub;Lee, Chan Young;Kwon, Dong Wook
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.25-28
    • /
    • 2002
  • Slowly cooled $Cu_xFe_{3-x}O_4$ ($\chi$=0.1, 0.2) have been investigated over a temperature range from 82 to 700 K using the M$\ddot{o}$ssbauer technique. X-ray diffraction shows that these have a single-phase cubic spinel structure of lattice parameters $\alpha$=8.396 and 8.398${\AA}$, respectively. Since Cu ions prefer B (octahedral) sites to A (tetrahedral) sites, the ionic distribution is $(Fe)_A[Fe_{2-x}Cu_x]_BO_4$. M$\ddot{o}$ssbauer spectra consisted of two sets of 6-line pattern from. A site in ferric state and B site in ferrous-ferric state. Intensity ratio of B to A subspectra is 1.0 at 82 K and increases to 2.0 at 700 K with increasing temperature. After annealing the samples under vacuum at $450^circ{C}$ for a half hour, x-ray diffraction patterns have the peaks of magnetite- and hematite-phase. Lattice constants of magnetite-phase are 8.395 and 8.392 ${\AA}$ smaller than 8.396 and 8.398 ${\AA}$ before annealing, respectively. M$\ddot{o}$ssbauer spectra reveal the conventional magnetite pattern with the additional hematite pattern. Intensity ratios of B to A subspectra fur magnetite-phase become 1.9-2.0 over all temperature ranges and Cu ions are distributed over A and B sites randomly. Ratios of hematite to total intensity in M$\ddot{o}$ssbauer spectra for $\chi$= 0.1 and $\chi$= 0.2 are 10 and 21%, respectively. These hematite ratios may be due to annealing under vacuum at $450^circ{C}$, which transforms $Cu^{2+}$ ionic states into $Cu^{1+}$. Verwey temperatures far $\chi$= 0.1 and $\chi$= 0.2 are $123\pm2$ K and $128\pm2$ K.

Synthesis of Aligned Porous Sn by Freeze-Drying of Tin Chloride/camphene Slurry (염화주석/camphene 슬러리의 동결건조에 의한 방향성 기공구조의 Sn 다공체 제조)

  • Bang, Su-Ryong;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide ($SnO_2$) coated Sn powders. The $SnO_2$ coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at $670^{\circ}C$ in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at $1100^{\circ}C$ for 1 h in a hydrogen atmosphere, showed large pores of about $200{\mu}m$, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, $100{\mu}m$ spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.

Design of 1 MW High-temperature Superconducting Motor with Water-cooled Armature (수냉식 전기자로 구성된 1 MW 고온초전도 동기모터의 설계)

  • Baik, S.K.;Lee, J.D.;Kim, S.H.;Lee, E.Y.;Sohn, M.H.;Kwon, Y.K.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Lee, J.Y.;Hong, J.P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1258-1260
    • /
    • 2005
  • Superconducting synchronous motors and generators have the field coil composed of superconductor with almost zero resistance at superconducting state. Therefore, co or loss at the conventional field coil is eliminated and the superconducting machine gets higher efficiency. The armature coil of the superconducting machine is composed of cower wire and supported by non-magnetic material such as FRP(Fiber Reinforced Plastic). Although a fully-superconducting machine with superconducting armature coil has been researched, it was not developed toward industrial application because of AC transporting loss and difficulty in construction of the cooling structure and so on. This paper contains the design procedure of a 1 MW superconducting synchronous motor using high-temperature superconductor only for the field coil. Especially, the armature coil is designed by water-cooling in order to dissipate Joule heat easily. Moreover, 3-dimensional electromagnetic design is conducted to get a proper design result and reduce design errors from 2-dimensional approach.

  • PDF

Shielding design and analyses of the cold neutron guide hall for the KIPT neutron source facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.989-995
    • /
    • 2018
  • Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine, and its commissioning process is underway. The facility will be used for researches, producing medical isotopes, and training young nuclear specialists. The neutron source facility is designed with a provision to include a cryogenically cooled moderator system-a cold neutron source (CNS). This CNS provides low-energy neutrons, which will be used in the scattering experiment and material structures analysis. Cold neutron guides, coated with reflective material for the low-energy neutrons, will be used to transport the cold neutrons to the experimental site. The cold neutron guides would keep the cold neutrons within certain energy and angular space concentrated inside, while most of the gamma rays and high-energy neutrons are not affected by the cold neutron guides. For the KIPT design, the cold neutron guides need to extend several meters outside the main shield of the facility, and curved guides will also be used to remove the gamma and high-energy neutron. The neutron guides should be installed inside a shield structure to ensure an acceptable biological dose in the facility hall. Heavy concrete is the selected shielding material because of its acceptable performance and cost. Shield design analysis was carried out for the CNS guide hall. MCNPX was used as the major computation tool for the design analysis, with neutron and gamma dose calculated separately. Weight windows variance reduction technique was also used in the shield design. The goal of the shield design is to keep the total radiation dose below the $5.0{\mu}Sv/hr$ guideline outside the shield boundary. After a series of iterative MCNPX calculations, the shield configuration and parameters of CNS guide hall were determined and presented in this article.