• Title/Summary/Keyword: cooled air

Search Result 558, Processing Time 0.02 seconds

Radiation Shielding Property of Concrete Using the Rapidly Cooled Steel Slag from Oxidizing Process in the Converter Furnace as Fine Aggregate

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.478-489
    • /
    • 2012
  • Each year, about four million tons of steel slag, a by-product produced during the manufacture of steel by refining pig iron in the converter furnace, is generated. It is difficult to recycle this steel slag as aggregate for concrete because the reaction with water and free-CaO in steel slag results in a volume expansion that leads to cracking. However, the steel slag used in this study is atomized using an air-jet method, which rapidly changes the melting substance at high temperature into a solid at a room temperature and prevents free-CaO from being generated in steel slag. This rapidly-cooled steel slag has a spherical shape and is even heavier than natural aggregate, making it suitable for the aggregate of radiation shielding concrete. This study deals with the radiation shielding property of concrete that uses the rapidly-cooled steel slag from the oxidizing process in the converter furnace as fine aggregate. It was shown that the radiation shielding performance of concrete mixed with rapidly-cooled steel slag is even more superior than that of ordinary concrete.

An Experimental Study on Transient Heat Transfer Characteristics of Gas Turbine Cooled Vane by Using Liquid Crystal Thermography (가스터빈 냉각 베인에서 감온액정을 이용한 과도적 열전달 특성에 관한 실험적 연구)

  • Suh Nam-Kyu;Chang Tae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • Gas turbine engine among Principal internal combustion engines has been mainly applied as an aero and industrial Power plant. In order to increase its thermal efficiency. it has been raised their pressure ratio of compressor and the turbine inlet temperature. To operate above the limit temperature of turbine material, turbine nozzle vanes should be cooled. For this the cooling air is bled from the compressor section of 9as turbine. Meanwhile, to keep high thermal efficiency of 9as turbine, turbine vanes are to be cooled by using small cooling air Therefore, the complex cooling passages are requested to be designed and evaluated the effectiveness of vane cooling by measuring turbine vane temperature. But it is very difficult or impossible for us to measure local turbine temperatures at actual temperature When local heat transfer coefficients are known these can be calculated, therefore this study has been investigated on obtaining these coefficients of turbine vane at room temperature using TLC.

Basic Study on Sub-cooling System using Ice storage tank (빙축열조를 이용한 냉매과냉각 시스템 기초연구)

  • Lee, Eun-Ji;Lee, Dong-Won;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.990-995
    • /
    • 2009
  • Experimental basic study was performed to understand the characteristics of sub-cooled refrigerant using a cold heat storage system. This system was made up general vapor-compression refrigeration cycle added sub-cooler and ice storage tank. The purpose of this study are to application use of cold-heat storage systems multiplicity of fields and to understand of sub-cooling system. At the condition using ice storage system, the ice making process was operated during night time by electric power. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. Comparing the result at general operation with the operation using sub-cooling system. This study showed the effects of the sub-cooled degree. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, and the compressor consume power was a little decreased. Thus the COP was also increased owing to the sub-cooling of refrigerant.

  • PDF

Insulation Characteristics for a Conduction-Cooled HTS SMES

  • Cheon H.G.;Baek S.M.;Seong K.C.;Kim H.J;Kim S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.39-43
    • /
    • 2005
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, this work focuses on the breakdown and flashover phenomenology of dielectrics exposed in vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summary the insulation factors of the magnet for HTS SMES. And a surface flashover as well as volume breakdown in air and vacuum has been investigated with two kind insulators. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature.

Distortion and transformation of high tensile strength steel plate of 50kg/mm$^{2}$grade due to line heating (50kg/mm$^{2}$급 고장력 강판의 선상가열에 따른 판상변형과 재질변화)

  • 정남호;최병길;박종은
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1985
  • The line heating is a thermoplastic working technique which is used in bending work of steel plate and in correcting the distortion of welded structure. This method is considerably effective when the water-cooling is followed. In this study, an investigation was accomplished to find the effects on the change of material properties when the line heating was applied on the high tensile steel plate of 50kg/mm^2$ grade. Some steel plates were heated to various temperatures and then cooled with water or in the air. In this study, the author measured the angular distortion continuously during line heating to find out the relation between the bending efficiency and heating or water-cooling temperature. Furthermore, its material properties were examined by the V-notch Charpy impact test, the microscope observation and the Vickers hardness test. As results, the followings were clarified. (1) The amount of angular distortion increases as the heating temperature or the water-cooling temperature rises. (2) When the steel plate is heated between 700.deg. C and 900.deg. C, and then is water-cooled over 700.deg. C, some brittle structure is observed. But if the temperature of water-cooling is below 700.deg. C, no brittle one is found. (3) When the steel plate is heated over 800.deg. C and is cooled in the air, there is no unfavrable effect.

  • PDF

A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk;Oh, Sang-Ki;Kang, Kum-Won;Ahn, Kyun-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation (시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교)

  • Sohn, Byonghu;Lim, Hyojae;Kang, Seongjae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

A Study on the Improvement of Performance for Centralized Air Conditioning System by Using Air-Cooled Air Conditioner - The Case of Mokpo National Maritime University - (공랭식 에어컨을 이용한 중앙 집중 공조시스템의 성능 개선에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Kim, Hong-Ryel;Han, Seung-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, distributed the ship's Centralized Air Conditioning System the way an individual to replace the air conditioning system by using Air-cooled air conditioner. Research results, Individually separated air conditioning system complement the heat source control and thermal efficiency problems and improves the efficiency of the device was confirmed. In addition, under the same conditions refrigeration capacity and coefficient of performance of the device, an average of about 3 %, 23 ~ 26 %, higher, Chilled Water Plants Compressor power consumption is about 12 % lower. Also while heating under the same conditions, power consumption is about 33.5 % lower. Therefore Individually Separated Air Conditioning System greatly contributed to the improved performance of the device and living spaces for comfortable temperature and humidity control as well as heating source could be obtained.

A Study on the Heat Transfer Characteristics Around a Surface-Mounted Air-Cooled Module for the Flow Angle-of-Attack (흐름 영각에 따른 강제공랭 모듈 주위의 열전달 특성에 관한 연구)

  • Park, Sang-Hui;Sin, Dae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1267-1275
    • /
    • 2002
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around a module cooled by forced air flow. The flow angle of attack to the module were 0$^{\circ}$and 45$^{\circ}$. In the first method, inlet air flow(1~7m/s) and input power.(3, 5, 7W) were varied after a heated module was placed on an adiabatic floor(320$\times$550$\times$1㎣). An adiabatic wall temperature was determinated to use liquid crystal film. In the second method to determinate heat transfer coefficient, inlet air flow(1~7m/s) and the heat flux of rubber heater(0.031~0.062W/$m^2$) were varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. Additional information is visualized by an oil-film method of the surface flow on the floor and the module. Plots of $T_{ad}$ and $h_{ad}$ show marked effects of flow development from the module and dispersion of thermal wake near the module. Certain key features of the data set obtained by this investigation may serve as a benchmark for thermal-design codes based on CFD.