• 제목/요약/키워드: coolant

검색결과 1,634건 처리시간 0.028초

원전 비상 노심냉각계통 배관 열성층화 현상 규명을 위한 실험적 연구 (Experimental Research for Identification of Thermal Stratification Phenomena in The Nuclear Powerplant Emergency Core Coolant System(ECCS).)

  • 송도인;최영돈;박민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.735-740
    • /
    • 2001
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, it occurs thermal stratification phenomena in case that there is the mixing of cooling water and high temperature water due to valve leakage in ECCS. This thermal stratification phenomena raises excessive thermal stresses at pipe wall. Therefore, this phenomena causes the accident that reactor coolant flows in reactor containment in the nuclear power plant due to the deformation of pipe and thermal fatigue crack(TFC) at the pipe wall around the place that it exists. Hence, in order to fundamental identification of this phenomena, it requires the experimental research of modeling test in the pipe flow that occurs thermal stratification phenomena. So, this paper models RCS and ECCS pipe arrangement and analyzes the mechanism of thermal stratification phenomena by measuring of temperature in variance with leakage flow rate in ECCS modeled pipe and Reynold number in RCS modeled pipe. Besides, results of this experiment is compared with computational analysis which is done in advance.

  • PDF

증류수-부동액 혼합 $Al_2O_3$ 나노유체의 열전도도와 점성계수 (Thermal Conductivity and Viscosity of Distilled Water/Commercial Coolant Based $Al_2O_3$ Nanofluids)

  • 권혜림;황교식;장석필
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.130-137
    • /
    • 2011
  • Experimental investigations are conducted to figure out the feasibility of $Al_2O_3$ nanofluids as the alternative coolant for car engine. For the purpose, the thermal conductivities and viscosities of water/commercial coolant based $Al_2O_3$ nanofluids with 0.3, 1.0, 2.0 and 3.0 vol. % at temperatures ranging from $25^{\circ}C$ to $35^{\circ}C$ are measured. Thermal conductivities are measured using the transient hot-wire method and also viscosities are measured by Brookfield LVDV-III rheometer. Based on the results, it is shown that thermal conductivity of $Al_2O_3$ nanofluids with 3.0 vol. % is increased about 11% at $35^{\circ}C$ and the increment of viscosity approaches to 84% at shear rate of 600(1/s) and 80% at shear rate of 960(1/s) in the same temperature. with fundamental data for the thermal conductivity and viscosity of the nanofluids, the feasibility of $Al_2O_3$ nanofluids as the alternative coolant for car engine are discussed.

엔진 냉각수 폐열 회수용 스크롤 팽창기 설계 (Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant)

  • 유제승;김현재;김현진
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

소형 연소기 냉각 유로 개념 설계 (Conceptual Design of Coolant Channel for Sub-scale Combustion Chamber)

  • 정용현;조원국;한상엽;류철성
    • 한국추진공학회지
    • /
    • 제6권4호
    • /
    • pp.1-6
    • /
    • 2002
  • 소형 연소기의 냉각 유로 설계를 위하여 열전달 및 냉각 유로의 구조해석을 수행하였다. 연소기의 고온가스에서의 열전달에 관한 2차원 해석을 수행하여 연소실 벽으로의 열유속을 예측한 다음 이를 3차원 해석을 위한 열경계 조건으로 적용하였다. 위 방법으로 예측한 열 유속은 기존의 경험식과 비교하여 검증하였으며 냉각수의 유량에 둔감한 것으로 판명되어 냉각 조건이 변화하더라도 동일한 열경계 조건을 사용할 수 있었다. 단일 냉각 유로에 대한 3차원 해석을 수행하여 연소실 벽의 최대온도 변화를 예측하였으며 이는 재사용 연소기 개발에 적용될 것이다. 냉각 유로의 정적 구조 해석을 통해 응력 분포와 구조 안전성을 예측하였다.

Loss of coolant accident analysis under restriction of reverse flow

  • Radaideh, Majdi I.;Kozlowski, Tomasz;Farawila, Yousef M.
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1532-1539
    • /
    • 2019
  • This paper analyzes a new method for reducing boiling water reactor fuel temperature during a Loss of Coolant Accident (LOCA). The method uses a device called Reverse Flow Restriction Device (RFRD) at the inlet of fuel bundles in the core to prevent coolant loss from the bundle inlet due to the reverse flow after a large break in the recirculation loop. The device allows for flow in the forward direction which occurs during normal operation, while after the break, the RFRD device changes its status to prevent reverse flow. In this paper, a detailed simulation of LOCA has been carried out using the U.S. NRC's TRACE code to investigate the effect of RFRD on the flow rate as well as peak clad temperature of BWR fuel bundles during three different LOCA scenarios: small break LOCA (25% LOCA), large break LOCA (100% LOCA), and double-ended guillotine break (200% LOCA). The results demonstrated that the device could substantially block flow reversal in fuel bundles during LOCA, allowing for coolant to remain in the core during the coolant blowdown phase. The device can retain additional cooling water after activating the emergency systems, which maintains the peak clad temperature at lower levels. Moreover, the RFRD achieved the reflood phase (when the saturation temperature of the clad is restored) earlier than without the RFRD.

Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump

  • Zhou, Qiang;Li, Hongkun;Pei, Lin;Zhong, Zuowen
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1020-1028
    • /
    • 2021
  • The nuclear reactor coolant pump transferring heat energy inherently brings with it the unsteady flow and inevitably threatens to the safe operation of the pump unit, especially with the pressure pulsation induced by the rotor-stator interaction. In this paper, the characteristics of pressure pulsation of the diffuser in a nuclear reactor coolant pump were investigated by the numerical simulation with experimental validation. Pressure pulsation signals measured synchronously from sensors mounted on the radial diffuser of a model pump were analyzed via Welch's method. Frequency components induced by the rotor-stator interaction can be revealed by the diameter mode analysis method. The pressure pulsation of the diffuser is dominated by the blade passing frequency and its harmonics, which are free from the effect of flow rate and rotational speed while the corresponding amplitudes are easily affected by different operational conditions and measuring positions. The non-uniformity is much more affected by the rotational speed than the flow rate. This research is helpful for further work to reduce the pressure pulsation for the reactor coolant pump.

The treatment of coolant wastewater of rolling plate process by High Gradient Magnetic Separation

  • Kim, Tae-Hyung;Ha, Dong-Woo;Kwon, Jun-Mo;Sohn, Myung-Hwan;Baik, Seung-Kyu;Oh, Sang-Soo;Ko, Rock-Kil;Kim, Ho-Sup;Kim, Young-Hun;Park, Seong-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권4호
    • /
    • pp.8-11
    • /
    • 2009
  • This study introduced wastewater treatment method by High Gradient Magnetic Separation (HGMS). HGMS treatment was high efficient method for various industrial wastewaters. The system is currently research state, but we have surveyed commercialize the technology for industry. In rolling plate process, coolant wastewater was recycled by sedimentation and sand filter system. It needs several large reservoirs and long time to remove suspended solid (SS) like metal fines and iron oxide in hot rolling plate making process. If removing rate of suspended solid in rolling coolant wastewater is improved by using HGMS system, the productivity of working process can be increased and the area of reservoir can be reduced. We manufactured high temperature superconducting HGMS system that had a purpose to treatment of coolant wastewater in rolling plate process. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel 430 mesh, which is a core component in the magnetic separation system, In our basic preliminary experiment using HGMS system, it has been clear that the fine paramagnetic particles in the coolant wastewater obtained from rolling plate process of POSCO can be separated with high efficiency.

Integral effect tests for intermediate and small break loss-of-coolant accidents with passive emergency core cooling system

  • Byoung-Uhn Bae;Seok Cho;Jae Bong Lee;Yu-Sun Park;Jongrok Kim;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2438-2446
    • /
    • 2023
  • To cool down a nuclear reactor core and prevent the fuel damage without a pump-driven active component during any anticipated accident, the passive emergency core cooling system (PECCS) was designed and adopted in an advanced light water reactor, i-POWER. In this study, for a validation of the cooling capability of PECCS, thermal-hydraulic integral effect tests were performed with the ATLAS facility by simulating intermediate and small break loss-of-coolant accidents (IBLOCA and SBLOCA). The test result showed that PECCS could effectively depressurize the reactor coolant system by supplying the safety injection water from the safety injection tanks (SITs). The result pointed out that the safety injection from IRWST should have been activated earlier to inhibit the excessive core heat-up. The sequence of the PECCS injection and the major thermal hydraulic transient during the SBLOCA transient was similar to the result of the IBLOCA test with the equivalent PECCS condition. The test data can be used to evaluate the capability of thermal hydraulic safety analysis codes in predicting IBLOCA and SBLOCA transients under an operation of passive safety system.

경제성을 고려한 환경 친화형 가공 기술 (Environmentally Conscious Machining Technology Considered Economic View)

  • 강재훈;이찬홍;송준엽;이재경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.972-975
    • /
    • 2000
  • Environmental factors have become important in manufacturing planning due to governmental regulations and a growing preference for "green" products. However, planning decisions must also consider traditional dimensions such as production rate and quality. In this study, technology related to basic dicision method of environmentally conscious machining considered economic view was dealed. And experiments of dry type machining excluded coolant and semi-dry type machining using minimum coolant were established for the comparison of conventional machining ouputs.ng ouputs.

  • PDF

연료전지 시스템 자동차용 부동 냉각액 연구 (Study of Antifreeze Coolant for Fuel Cell System using the vehicle)

  • 조창렬;이홍기;정재훈;이미지
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2007
  • We aim to develop antifreezing coolant used to in the 200kW Fuel Cell system that is possible to starting at low temperature and that must not to be freezed under $-30^{\circ}C$, have high coductivity, excellent system protection ability and durability.

  • PDF