• Title/Summary/Keyword: convolutional neural networks (CNN)

Search Result 356, Processing Time 0.028 seconds

Classification of Non-Signature Multimedia Data Fragment File Types With Byte Averaging Gray-Scale (바이트 평균의 Gray-Scale화를 통한 Signature가 존재하지 않는 멀티미디어 데이터 조각 파일 타입 분류 연구)

  • Yoon, Hyun-ho;Kim, Jae-heon;Cho, Hyun-soo;Won, Jong-eun;Kim, Gyeon-woo;Cho, Jae-hyeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • In general, fragmented files without signatures and file meta-information are difficult to recover. Multimedia files, in particular, are highly fragmented and have high entropy, making it almost impossible to recover with signature-based carving at present. To solve this problem, research on fragmented files is underway, but research on multimedia files is lacking. This paper is a study that classifies the types of fragmented multimedia files without signature and file meta-information. Extracts the characteristic values of each file type through the frequency differences of specific byte values according to the file type, and presents a method of designing the corresponding Gray-Scale table and classifying the file types of a total of four multimedia types, JPG, PNG, H.264 and WAV, using the CNN (Convolutional Natural Networks) model. It is expected that this paper will promote the study of classification of fragmented file types without signature and file meta-information, thereby increasing the possibility of recovery of various files.

Road Surface Damage Detection Based on Semi-supervised Learning Using Pseudo Labels (수도 레이블을 활용한 준지도 학습 기반의 도로노면 파손 탐지)

  • Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.71-79
    • /
    • 2019
  • By using convolutional neural networks (CNNs) based on semantic segmentation, road surface damage detection has being studied. In order to generate the CNN model, it is essential to collect the input and the corresponding labeled images. Unfortunately, such collecting pairs of the dataset requires a great deal of time and costs. In this paper, we proposed a road surface damage detection technique based on semi-supervised learning using pseudo labels to mitigate such problem. The model is updated by properly mixing labeled and unlabeled datasets, and compares the performance against existing model using only labeled dataset. As a subjective result, it was confirmed that the recall was slightly degraded, but the precision was considerably improved. In addition, the $F_1-score$ was also evaluated as a high value.

Luma Mapping Function Generation Method Using Attention Map of Convolutional Neural Network in Versatile Video Coding Encoder (VVC 인코더에서 합성 곱 신경망의 어텐션 맵을 이용한 휘도 매핑 함수 생성 방법)

  • Kwon, Naseong;Lee, Jongseok;Byeon, Joohyung;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.441-452
    • /
    • 2021
  • In this paper, we propose a method for generating luma signal mapping function to improve the coding efficiency of luma signal mapping methods in LMCS. In this paper, we propose a method to reflect the cognitive and perceptual features by multiplying the attention map of convolutional neural networks on local spatial variance used to reflect local features in the existing LMCS. To evaluate the performance of the proposed method, BD-rate is compared with VTM-12.0 using classes A1, A2, B, C and D of MPEG standard test sequences under AI (All Intra) conditions. As a result of experiments, the proposed method in this paper shows improvement in performance the average of -0.07% for luma components in terms of BD-rate performance compared to VTM-12.0 and encoding/decoding time is almost the same.

Vector and Thickness Based Learning Augmentation Method for Efficiently Collecting Concrete Crack Images

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.65-73
    • /
    • 2023
  • In this paper, we propose a data augmentation method based on CNN(Convolutional Neural Network) learning for efficiently obtaining concrete crack image datasets. Real concrete crack images are not only difficult to obtain due to their unstructured shape and complex patterns, but also may be exposed to dangerous situations when acquiring data. In this paper, we solve the problem of collecting datasets exposed to such situations efficiently in terms of cost and time by using vector and thickness-based data augmentation techniques. To demonstrate the effectiveness of the proposed method, experiments were conducted in various scenes using U-Net-based crack detection, and the performance was improved in all scenes when measured by IoU accuracy. When the concrete crack data was not augmented, the percentage of incorrect predictions was about 25%, but when the data was augmented by our method, the percentage of incorrect predictions was reduced to 3%.

Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition (다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가)

  • Ahn, Sung Moo;Lee, Gun Hee;Kim, Se Jin;Bae, So Jeong;Lee, Hyun Ju;Oh, Do Chang;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

Study of Black Ice Detection Method through Color Image Analysis (컬러 이미지 분석을 통한 블랙 아이스 검출 방법 연구)

  • Park, Pill-Won;Han, Seong-Soo
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.90-96
    • /
    • 2021
  • Most of the vehicles currently under development and in operation are equipped with various IoT sensors, but some of the factors that cause car accidents are relatively difficult to detect. One of the major risk factors among these factors is black ice. Black ice is one of the factors most likely to cause major accidents, as it can affect all vehicles passing through areas covered with black ice. Therefore, black ice detection technique is essential to prevent major accidents. For this purpose, some studies have been carried out in the past, but unrealistic factors have been reflected in some parts, so research to supplement this is needed. In this paper, we tried to detect black ice by analyzing color images using the CNN technique, and we succeeded in detecting black ice to a certain level. However, there were differences from previous studies, and the reason was analyzed.

Quantifying and Analyzing Vocal Emotion of COVID-19 News Speech Across Broadcasters in South Korea and the United States Based on CNN (한국과 미국 방송사의 코로나19 뉴스에 대해 CNN 기반 정량적 음성 감정 양상 비교 분석)

  • Nam, Youngja;Chae, SunGeu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.306-312
    • /
    • 2022
  • During the unprecedented COVID-19 outbreak, the public's information needs created an environment where they overwhelmingly consume information on the chronic disease. Given that news media affect the public's emotional well-being, the pandemic situation highlights the importance of paying particular attention to how news stories frame their coverage. In this study, COVID-19 news speech emotion from mainstream broadcasters in South Korea and the United States (US) were analyzed using convolutional neural networks. Results showed that neutrality was detected across broadcasters. However, emotions such as sadness and anger were also detected. This was evident in Korean broadcasters, whereas those emotions were not detected in the US broadcasters. This is the first quantitative vocal emotion analysis of COVID-19 news speech. Overall, our findings provide new insight into news emotion analysis and have broad implications for better understanding of the COVID-19 pandemic.