• Title/Summary/Keyword: convex body

Search Result 75, Processing Time 0.023 seconds

Distribution of Electrically Conductive Sedimentary Layer in Jeju Island Derived from Magnetotelluric Measurements (MT 탐사자료를 이용한 제주도 지역의 전도성 퇴적층 분포 연구)

  • Lee, Choon-Ki;Lee, Heuisoon;Oh, Seokhoon;Chung, Hojoon;Song, Yoonho;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • We investigate the spatial distribution of highly conductive layer using the one-dimensional inversions of the new magnetotelluric (MT) measurements obtained at the mid-mountain (400 ~ 900 m in elevation) western area of Jeju Island and the previous MT data over Jeju Island, Korea. The conductive layer indicates the sedimentary layer comprised of Seoguipo Fomation and U Formation. There is a definite positive correlation between the top of conductive layer and the earth surface in elevation. On the contrary, the bottom of conductive layer has a negative correlation with the surface elevation. In other words, the conductive layer has a shape of convex lens, which is thickest in the central part. The basement beneath the conductive layer could be concave in the central part of Jeju Island. A kriging considering the correlation between the layer boundary and the surface elevation provides a reliable geoelectric structure model of Jeju Island. However, further studies, i.e. three-dimensional modeling and interpretation integrated with other geophysical or logging data, are required to reveal the possible presence of three-dimensional conductive body near the subsurface vent of Mt. Halla and the causes of the bias in the depths of layer estimated from MT and core log data.

Bending strength of alumina coated with bioglass and soda lime glass and the precipitation on the surface of coated alumina in PBS (생체 유리와 소다 유리침투에 따른 알루미나 세라믹의 굴곡 강도 및 PBS에서의 표면 생성물 연구)

  • Yuu, Jae-Yang
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2008
  • Titanium and its alloys are widely used as dental implants materials because of their excellent mechanical properties. However, the alumina and zirconia ceramics are preferred to use as the substitute of Ti implants because there is a problems in esthetics and biocompatibility in Ti implant. The the glass infiltrated alumina ceramics are studied to increase the toughness and biocompatibility. The 45S5 and soda-lime glass powder was mixed with ethanol at ratio of 1:1 and brushed on the surface of alumina. Then it was heat treated in the electric furnace at $1400^{\circ}C$ from 30 min. to 5 hours. The glass powder was controlled from 200 to $350{\mu}m$ using ball milling. After heat treatment, the glass infiltrated specimen was tested in universal testing machine to measure the bending strength. The surface microstructure of each specimen was observed with SEM. The biocompatibility of 45S5 and soda-lime glass coated alumina was investigated using PBS at $36.5^{\circ}C$ incubator. The specimen was immersed in PBS for 3, 5, 7, 10 days. After that, the surface morphology was investigated with SEM. As the results of experiment, the 45S5 bioglass infiltrated alumina show the increase of bending strength according to the increasing of heat treatment time from 30 min. to 5 hours at $1400^{\circ}C$ Finally the 1370N bending strength of alumina increased to 1958N at 5 hours heat treatment, which shows 1.4 times higher. In contrast to this, the soda lime glass infiltrated alumina ceramics shows the convex curve according to heat treatment time. Thus it shows maximum bending strength of 1820N at 1 hour heat treatment of $1400^{\circ}C$ It gives 1.3 times higher. However, the bending strength of soda lime glass infiltrated alumina is decreasing with increasing heat treatment time after 1 hour. The precipitation on the surface of 45S5 glass infiltrated alumina was revealed as a sodium phosphate ($Na_{6}P_{6}O_{24}6H_{2}O$) and the amount of precipitation is increasing with increasing of immersion time in PBS. In contrast to this, there is no precipitation are observed on the surface of soda lime glass infiltrated alumina. This implies that 45S5 glass infiltrated alumina brings more biocompatible when it is implanted in human body.

  • PDF

Breeding and cultural characteristics of a newly bred Lentinula edodes strain, 'Bambithyang' (표고 신품종 '밤빛향'의 육성 및 특성)

  • Park, Youngae;Jang, Yeongseon;Ryoo, Rhim;Ka, Kang-Hyeon
    • Journal of Mushroom
    • /
    • v.18 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • A new cultivar, 'Bambithyang', was bred from monokaryotic strains of Sanbaekhyang and SANJO 707ho using the mono-mono hybridization method. Its incubation period was determined to be 100 days and its optimum temperature for fruit body flushing, 11-20℃. The mushrooms had a convex cap (diameter, 69.6 mm; thickness, 15.2 mm) and stipes in their center. The color of their upper sides was chestnut brown; their gills were arranged in a ripple style and had medium density. Their scales were cream-colored and fully distributed; the stipes were cream-colored and cylindrical (thick upper part). They also had cream colored fluffs and sporadic fruiting bodies. Zone lines were present when they were cultivated with mother and father varieties. Their stipe lengths and caps were 9% shorter and 16.9% thicker, respectively, than those of Sanbaekhyang.

Characteristics of Lentinula edodesCultivar 'Heunghwa 1ho' Newly Bred for Log Cultivation (표고(Lentinula edodes) 원목재배용 신품종 '흥화1호' 육성 및 재배 특성)

  • Jang, Eun-Kyoung;Je, Seon-Jeong;Jang, Hye-Mi;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • To develop mushroom varieties for cultivating at low temperature on oak logs, a strain with a low fruiting body generation temperature was crossed with Di-mon to select for a line with excellent properties. Selection was followed by cultivation testing. From these studies, Heunghwa 1ho was identified. The optimum temperature for cultivating Heunghwa 1ho, was 13.3℃. The fruiting temperature range was 6.4~20.2℃, identical to that of the parent strain. Growth at 25℃ for 7 days achieved optimal mycelial growth of 61.9±2.10 mm, superior to growth of the parent strain at this temperature. The cap shape of Heunghwa 1ho was convex, cap diameter was 57.8±8.31 mm, and cap color was brown. Heunghwa 1ho showed similar genetic traits to those of the parental strain. However, dry weight (20.1 kg/m3) and cap diameter and color are superior to those of the parent strain. The 3 year fresh oak mushroom yield was 113.8 kg/m3, superior to the respective yields of the parent strains JMI 10047 and JMI 90021 (92.5 kg/m3 and 66.4 kg/m3).

SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES (양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구)

  • Lee, Sang-Han;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.