• Title/Summary/Keyword: converter design

Search Result 2,419, Processing Time 0.029 seconds

High Efficiency Two-Phase Interleaved Buck Converter with Coupled Inductor Design (커플드 인덕터를 적용한 고효율 2상 인터리브드 벅 컨버터 설계)

  • Kang, Hyunji;Kim, Jinwoo;Lee, Sungmin;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.350-357
    • /
    • 2020
  • This study presents the design of an 18 kW two-phase interleaved buck converter that uses a coupled inductor for an electric vehicle rapid charger. The designs of a two-phase coupled inductor for current ripple and physical size reduction and a two-phase interleaved buck converter based on silicon carbide metal - oxide - semiconductor field-effect transistor for high efficiency were described in detail. The operating principle of the two-phase interleaved buck converter was analyzed, and the coupled inductor was investigated using a magnetized equivalent circuit. Simulation and experiments were conducted to verify the validity of the proposed two-phase interleaved buck converter, and the theoretical design method and experimental results were confirmed.

A Study on DC-DC Converter Development for LRT Wireless Power Supply

  • Han, Young-Jae;Lee, Su-Gil;Lee, Young-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.179-184
    • /
    • 2018
  • In this paper, we have proposed the development of DC-DC converter for LRT power supply. First of all, we have studied converter technology, main functions and characteristics were determined. In also, the converter design was carried out to meet the system design conditions. Based on this design, converter simulation is performed to enable stable charging and discharging of the vehicle system. We have performed the Light-load test according to charge mode, discharge mode. As a result, the manufactured converter performance was verified through the load test, and it's stability was confirmed.

Reduced Rating T-Connected Autotransformer Based Thirty-Pulse AC-DC Converter for Vector Controlled Induction Motor Drives

  • Singh Bhim;Bhuvaneswari G.;Garg Vipin
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.214-225
    • /
    • 2006
  • The design and performance analysis of a reduced rating autotransformer based thirty-pulse AC-DC converter is carried out for feeding a vector controlled induction motor drive (VCIMD). The configuration of the proposed autotransformer consists of only two single phase transformers, with their windings connected in a T-shape, resulting in simplicity in design, manufacturing and in a reduction in magnetics rating. The design procedure of the autotransformer along with the newly designed interphase transformer is presented. The proposed configuration has flexibility in varying the transformer output voltage ratios as required. The design of the autotransformer can be modified for retrofit applications, where presently a 6-pulse diode bridge rectifier is used. The proposed thirty-pulse AC-DC converter is capable of suppressing less than $29^{th}$ harmonics in the supply current. The power factor is also improved to near unity in the wide operating range of the drive. A comparison of different power quality indices at AC mains and DC bus is demonstrated in a conventional 6-pulse AC-DC converter and the proposed AC-DC converter feeding a VCIMD. A laboratory prototype of the proposed autotransformer based 30-pulse AC-DC converter was developed with test results validating the proposed design and system.

A Study on the Controller Design of the Three-Level Boost Converter for Photovoltaic Power Conditioning System (태양광 발전 시스템용 3-레벨 부스트 컨버터 제어기 설계에 관한 연구)

  • Lee, Kyu-Min;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.227-236
    • /
    • 2021
  • This research proposes a modeling and controller design of a three-level boost (TLB) converter for the implementation of maximum power point tracking (MPPT) in the photovoltaic power conditioning system (PCS). Contrary to the output voltage control of the conventional controller, the Photovoltaic PCS requires an input voltage controller for MPPT operation. A TLB converter has the advantage of decreasing the inductor size and increasing efficiency compared with the existing booster converter. However, an optimal controller is difficult to design due to the complexity of the TLB operations, which have two operational modes on the duty ratio boundary of 0.5. Therefore, the unified linear model equations of the TLB converters, which can be applicable to both operational modes, are derived using linearized solar cell expressions. Furthermore, the transfer functions are obtained for the controller design. The MPPT voltage controller is designed using MATLAB SISOTOOL. In addition, a controller for capacitor voltage unbalancing is described and designed. The simulations and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

A Design Method of Transformer Turns Ratio with the Loss Components Analysis of an Isolated Bidirectional DC-DC Converter (절연형 양방향 DC-DC 컨버터의 손실 성분 분석을 통한 변압기 권선비 설계 방법)

  • Jung, Jae-Hun;Kim, Hak-Soo;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2016
  • This paper deals with transformer turns ratio design with the consideration of loss minimization in isolated bidirectional DC-DC converter. Generally, the rms value of current, magnitude of current at switching instance, and duty ratio of a converter vary according to the turns ratio of an isolation transformer in the converter under the same voltages and output power level. Therefore, the transformer turns ratio has an effect on the total loss in a converter. The switching and conduction losses of IGBTs and MOSFETs consisting of dual-active bridge converter are analyzed, and iron and copper losses in an isolation transformer and inductor are calculated. Total losses are calculated and measured in cases of four different transformer turns ratios through simulation and experiment with 3-kW converter, and an optimum turns ratio that provides minimum losses is found. The usefulness of the proposed transformer turns ratio design approach is verified through simulation and experimental results.

8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System (ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계)

  • Kim, Jinwoo;Baek, Seunghoon;Cho, Younghoon;Koo, Tae-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.

Design Consideration of LLC resonant converter (LLC 공진형 컨버터의 설계)

  • Choi Hang-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.50-52
    • /
    • 2006
  • This paper presents design consideration for LLC resonant converter utilizing the leakage inductance and magnetizing inductance of transformer as resonant components. The leakage inductance in the transformer secondary side is also considered in the gain equation. The design procedure is verified through experimental results.

  • PDF

Design and Control of PWM Buck-Boost AC-AC Converter for Voltage Compensation (전압 보상을 위한 PWM Buck-Boost AC-AC 컨버터의 설계 및 제어)

  • Choi, Nam-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.166-169
    • /
    • 2003
  • In this paper, a PWM Buck-Boost AC-AC converter for improvement of power quality of custom power is presented. The PWM Buck-Boost AC-AC converter is modelled by using circuit DQ transformation whereby the design guideline is obtained. Based on the analysis, the converter system is implemented with the design criteria and the experimental results show the validity of modelling and analysis.

  • PDF

Design of Modular DC/DC Converter for DC Distribution Network (직류배전망 연계를 위한 모듈러 DC/DC 컨버터의 설계)

  • Lee, Gyeong-Hoon;Jeong, Ga-Ram;Seol, Won-Kyu;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.436-437
    • /
    • 2018
  • This paper describes the structure and design of a modular DC/DC converter for connecting DC sources such as battery, solar cell, etc. to DC distribution network. The modular converter structure of IPOS type and the optimal design and implementation of the unit converter cell are discussed.

  • PDF

Operating Frequency Design for Stable Initial Operation of Loosely Coupled Resonant DAB Converter (Loosely Coupled Resonant DAB 컨버터의 안정적인 초기 구동을 위한 동작 주파수 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin;Lee, Jaehong;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.437-445
    • /
    • 2021
  • This paper proposes an operating frequency design method that limits the voltage applied to aload-side converter during the initial operation of a loosely coupled resonant dual-active bridge (LCR-DAB) converter and an initial operating strategy that applies it. The LCR-DAB converter uses two wireless power transfer coils instead of the high-frequency transformer of the general DAB converter. The wireless power coil has a physical distance of several tens of millimeter or more between the two coils; thus, the LCR-DAB converter is a bidirectional isolated power conversion system that can easily achieve high insulation performance. However, for the initial operation of the LCR-DAB, if the power-side converter is operated at the resonance frequency while the load-side converter is not operating, then a very high voltage due to resonance is applied to the load-side converter, thereby causing damage to the converter. Therefore, a method that can stably charge the DC link voltage of the secondary-side converter during the initial operation is needed. This paper proposes a method to initially charge the secondary-side DC link by operating the primary-side converter at a frequency with limited voltage gain rather than at a steady-state operating frequency. The validity of the proposed frequency design method and initial operating sequence is verified through simulation and experimentation of the 1 KW LCR-DAB converter.