• 제목/요약/키워드: converter control

검색결과 3,153건 처리시간 0.029초

4-레벨 컨버터 구동 방식에 의한 SRM DITC 제어 (DITC of SRM using 4-Level Converter)

  • ;이진국;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.99-102
    • /
    • 2006
  • This paper proposes a DITC(Direct Instantaneous Torque Control of SRM (Switched Reluctance Motor) using a novel 4-level converter for smooth torque control and high efficiency. DITC of SRM is very useful for smooth torque control, but the driving efficiency is low due to advanced current that does not produce torque. For the high efficiency control of SRM, fast excitation and demagnetization of phase current are required. A novel 4-level converter and a new control scheme are present to improve the driving efficiency. The proposed DITC of SRM using 4-level converter is verified by computer simulation.

  • PDF

A DSP-Based Dual Loop Digital Controller Design and Implementation of a High Power Boost Converter for Hybrid Electric Vehicles Applications

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.113-119
    • /
    • 2011
  • This paper presents a DSP based direct digital control design and implementation for a high power boost converter. A single loop and dual loop voltage control are digitally implemented and compared. The real time workshop (RTW) is used for automatic real-time code generation. Experimental results of a 20 kW boost converter based on the TMS320F2808 DSP during reference voltage changes, input voltage changes, and load disturbances are presented. The results show that the dual loop control achieves better steady state and transient performance than the single loop control. In addition, the experimental results validate the effectiveness of using the RTW for automatic code generation to speed up the system implementation.

Modified C-dump 컨버터를 이용한 자동차 냉각시스템 SRM 제어 (Control of SRM with Modified C-dump Converter in Cooling System of Automobiles)

  • 윤용호
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1297-1302
    • /
    • 2017
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount importance. The paper describes the essential elements faced in designing and constructing driving circuits for a switched reluctance motor for automobiles. An important factor in the selection of a motor and a drive for industrial application is the cost. The switched reluctance motor(SRM) is a simple, low-cost, and robust motor suitable for variable-speed as well as servo-type applications. With relatively simple converter and control requirements, the SRM is gaining an increasing attention in the drive industry. This paper presents a modified C-dump converter for Switched Reluctance Motor (SRM) machine application in the cooling system of automobiles. The experiments are performed to verify the capability of applicate control method on 6/4 salient type SRM.

영전류 스위칭 방식의 직렬 공진형 AC/DC 컨버터를 위한 전환모드 이산 슬라이딩 제어 (Switched discrete sliding mode control for ZCS series rosonant AC to DC converter)

  • 문건우;이정훈;이대식;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1219-1226
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. The proposed single phase AC to DC converter enables a zero current switching operation of all the power devices allowing the circuit to operate at high swtiching frequencies and high power levels. A dynamic model for this Ac to DC converter is developed and an analysis for the internal operational characteristics is explored. Based on this analysis, a switched discrete sliding mode control(SDSMC) technique is investigated and its advantages over the other types of current control techniques are discussed. With the proposed control technique, the unity power factor without a current overshoot and a wide range of output voltage can be obtained.

  • PDF

Robust Control of DC-DC Converter by Approximate 2DOF Digital Controller Realizing First-Order Model

  • Higuch, Kohji;Takegami, Eiji;Nakano, Kazushi;Tomioka, Satoshi;Watanabe, Kazushi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.794-799
    • /
    • 2005
  • Robust DC-DC converter which can cover extensive load changes and also input voltage changes with one controller is needed. In this paper, we propose a method for determining the parameters of 2DOF digital controller which makes the control bandwidth wider, and at the same time makes a variation of the output voltage very small at sudden changes of resistive load and the input voltage. The 2DOF digital controller whose parameters are determined by the proposed method is actually implemented on a DSP and is connected to a DC-DC converter. Experimental studies demonstrate that this type of digital controller can satisfy given specifications.

  • PDF

6펄스 콘버어터로 제어되는 초전도 에너지 저장장치에 의한 전력계통 안정화

  • 차귀수;한송엽;원종수
    • 대한전기학회논문지
    • /
    • 제35권8호
    • /
    • pp.353-362
    • /
    • 1986
  • This paper shows that 6 pulse converter instead of 12 pulse converter can be used for the control of Superconducting Magnet Energy Storage(SMES) to improve the stability and to suppress the voltage fluctuation of power system. In order to prevent the commutation failure, when 6 pulse converter used for simultaneous control of real power and reactive power is asymmetrically controlled, stable control region has been presented by analyzing the commutation phenomena at critical points which distinguish the stable control region from the unstrol control region. Harmonic components of line current and output voltage have been calculated. Finally, computer simulation of power system stabilization has been presented to show the effectiveness of the proposed method. According to the computation results, SMES controlled by the 6 pulse converter is an effective measure in reducing the oscillation and the transient instability of the power system.

  • PDF

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

파워 LED 시스템 성능개선을 위한 DC/DC 컨버터에 관한 연구 (A Study on the DC to DC Converter to Improve the Performance of Power LED System)

  • 김영태;김세윤
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.85-90
    • /
    • 2022
  • In this paper, a DC converter to improve the performance of Power LED system is discussed. The mathematical model of PWM converter power stage using 3-Terminal PWM cell is introduced for power LED system. A controller for DC converter system is used as a self-tunning regulator with a recursive least-squares algorithm. Minimum variance control method is used as a control law. Experiment results verified that proposed control system could improve the performance of Power LED system.

배터리 충, 방전 및 영전압 제어를 위한 양방향 컨버터 설계 (Design of a Bidirectional Converter for Battery Charging, Discharging and Zero-voltage Control)

  • 최재혁;권혁진;권재현;이준영
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.431-437
    • /
    • 2022
  • This study proposes a converter that makes battery charging, discharging, and zero voltage control possible. The proposed topology consists of an LLC converter and a half-bridge inverter, and all power semiconductor devices are applied Si-MOSFETs. The topology is designed with an LLC switching frequency of 100 kHz, a half-bridge inverter switching frequency of 50 kHz, and a battery voltage of 5 V. The advantages of the charging/discharging operation of the 5 V battery voltage and the zero voltage control of the battery are verified. In addition, by using a two-stage topology, the battery can be charged, discharged through current control, and discharged to zero voltage. With the proposed topology, the current can be maintained even when the battery voltage drops to zero.