• Title/Summary/Keyword: conversion yield

Search Result 689, Processing Time 0.035 seconds

Formation of Succinic Acid by Klebsiella pneumoniae MCM B-325 Under Aerobic and Anaerobic Conditions

  • Thakker Chandresh;Bhosale Suresh;Ranade Dilip
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.870-879
    • /
    • 2006
  • The present study describes the formation of succinic acid by a nonvirulent, highly osmotolerant Klebsiella pneumoniae strain SAP (succinic acid producer), its profile of metabolites, and enzymes of the succinate production pathway. The strain produced succinate along with other metabolites such as lactate, acetate, and ethanol under aerobic as well as anaerobic growth conditions. The yield of succinate was higher in the presence of $MgCO_3$ under $N_2$ atmosphere as compared with that under $CO_2$ atmosphere. Analysis of intracellular metabolites showed the presence of a smaller PEP pool than that of pyruvate. Oxaloacetate, citrate, and $\alpha$-ketoglutarate pools were considerably larger than those of isocitrate and fumarate. In order to understand the synthesis of succinate, the enzymes involved in end-product formation were studied. Levels of phosphoenolpyruvate carboxykinase, fumarate reductase, pyruvate kinase, and acetate kinase were higher under anaerobic growth conditions. Based on the profiles of the metabolites and enzymes, it was concluded that the synthesis of succinate took place via oxaloacetate, malate, and fumarate in the strain under anaerobic growth conditions. The strain SAP showed potential for the bioconversion of fumarate to succinate under $N_2$ atmosphere in the presence of $MgCO_3$. At an initial fumarate concentration of 10 g/l, 7.1 g/l fumarate was converted to 7 g/l succinate with a molar conversion efficiency of 97.3%. The conversion efficiency and succinate yield were increased in the presence of glucose. Cells grown on fumarate contained an 18-fold higher fumarate reductase activity as compared with the activity obtained when grown on glucose.

Liquefaction Characteristics of PP by Pyrolysis (PP의 열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Lee, Bong-Hee;Park, Su-Yul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • Pyrolysis of polypropylene(PP) Was performed to find the effects of the pyrolysis temperature(425, 450, 475 and $500^{\circ}C$) and the pyrolysis time(35, 50 and 65minutes), respectively. Conversion and liquid yield obtained during PP pyrolysis continuously increased with the pyrolysis temperature( up to $500^{\circ}C$) and the pyrolysis time(up to 65minutes), especially these were more sensitive to the pyrolysis time at $425^{\circ}C$ than other pyrolysis temperatures. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The liquid products of PP pyrolysis up to $450^{\circ}C$ were almost same fractions($26{\pm}3$wt.% gasoline, $20{\pm}2$wt.% kerosene and $23{\pm}2$wt.% light oil) except wax($3{\sim}13$wt.%). On the other hand, the pyrolysis of PP from $475^{\circ}C$ to $500^{\circ}C$ produced $26{\pm}3$wt.% wax, $24{\pm}1$wt.% gasoline, $18{\pm}1$wt.% kerosene and $16{\pm}1$wt.% light oil. After all, the main liquid product changed from gasoline to wax with increasing pyrolysis temperature.

Effects of zinc, vitamin and selenium additives for improving meat quality on the growth performance, carcass characteristics and economic efficiency of holstein steers (아연, 비타민과 셀레늄의 첨가가 홀스타인 거세우의 발육, 도체특성 및 경제성에 미치는 영향)

  • Cho, Won Mo;Lee, Sang Min
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • This study was conducted to investigate the effect of different additives on the growth performance, feed efficiency and carcass characteristics in Holstein steers during 18month fattening periods. Twenty four Holstein steers, 5months of age and 176.6kg, were randomly allocated to 3 experimental groups 8 animals each for 18-months feeding trial. The groups were control (not additive), T1 (fed zinc, Vitamin C) and T2 (fed zinc, Vitamin C, Vitamin B6 and Selenium). According to feeding additives, final weight was not significantly different among the treatment groups, tended to be high at T2 group (827kg) compared to the other groups. Average daily gain was not different among the treatment groups during the experimental periods, but T2 group was significantly greater than T1 group in growing stage (p<0.05). The feed additives had no effects on DMI during experimental periods. Feed conversion ratio of T1 group in growing stage was significantly higher than those of other groups (p<0.05), average feed conversion ratio was tend to be decreased at T2 group rather compared with other groups. In the results of yield traits, carcass weight were relatively higher in T2 group than other groups (p<0.05). Rib-eye area, back fat thickness and yield index were similar between groups. In quality traits, marbling, meat color, fat color, texture and maturity were not significantly different among the groups. In economic efficiency, income was highest at T2 group as 91~393 thousand won among 3 groups.

Hydrothermal Pressure Effect over Preparation of MoS2: Catalyst Characterization and Direct Methanation (수열 압력 제조 조건이 MoS2 촉매 특성과 직접 메탄화 반응에 미치는 영향)

  • PARK, JEONGHWAN;KIM, SEONGSOO;KIM, JINGUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.170-180
    • /
    • 2018
  • After $MoS_2$ catalyst was prepared at 1, 30, and 70 atm, the hydrothermal pressure effect over preparation of $MoS_2$ was investigated in terms of catalyst characterization and direct methanation. Multifaceted characterization techniques such as XRD, BET, SEM, TPR, EDS, and XPS were used to analyze and investigate the effect of high pressure over the preparation of surface and bulk $MoS_2$ catalyst. Result from XRD, SEM, and BET demonstrated that $MoS_2$ was more dispersed as preparation pressure was increased, which resulted finer $MoS_2$ crystal size and higher surface area. EDS result confirmed that bulk composition was $MoS_2$ and XPS result showed that S/Mo mole ratio of surface was about 1.3. TPR showed that $MoS_2$ prepared at 30 atm possessed higher active surface sites than $MoS_2$ prepared at 1 atm and these sites could contribute to higher CO yield during methanation. Direct methanation was used to evaluate the CO conversion of the both catalysts prepared at 1 atm and 30 atm and reaction condition was at feed mole ratio of $H_2/CO=1$, GHSV=4800, 30 atm, temperature($^{\circ}C$) of 300, 350, 400, and 450. $MoS_2$ prepared at 30 atm showed more stable and higher CO conversion than $MoS_2$ prepared at 1 atm. Faster deactivation was occurred over $MoS_2$ prepared at 1 atm, which indicated that preparation pressure of $MoS_2$ catalyst was the dominant factor to improve the yield of direct methanation.

Functional Relationship between the Fermentation Characteristics of S. cerevisiae and Fermention Time (효모 S. cerevisiae의 돼지감자 알콜발효 특성과 발효시간과의 함수관계)

  • 허병기;김현성목영일
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.191-196
    • /
    • 1989
  • Functional relationship between the Fermentation characteristics of Functional relationship between the Fermentation characteristics of S. cerevisiae SIV-89 and the fermentation time was investigated. According to the increase in the initial sugar cone. from 50g/L to 80 g/L, maximum specific growth rate and maximum specific alcohol production rate were increased until 0.35 and 1.98. But the two values were decreased with increase of initial sugar cone. in the region of more that 80 g/L. Maximum alcohol yield and biomass yield were 0.45 and 0.15 respectively. However those vlaue were found to be reduced with the argument of initial sugar concentration. Sugar conversion was decreased with sugar concentration. When the sugar concentration was more than 190 g/L, the conversion was dropped below 70%. The increase of alcohol concentration in the fermentation broth induced the phenomenon of decline of metabolism. In case of more than 80 g/L of alcohol conc., biomass growth and alcohol production were completely stopped regardless of remaining sugar concentration.

  • PDF

Lipase-catalyzed Transesterification in Several Reaction Systems: An Application of Room Temperature Ionic Liquids for Bi-phasic Production of n-Butyl Acetate

  • Park Suk-Chan;Chang Woo-Jin;Lee Sang-Mok;Kim Young-Jun;Koo Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.99-102
    • /
    • 2005
  • Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni- and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][$PF_6$]) and bis[{trifluoromethylsulfonyl} imide] ([BMIM] [$Tf_{2}N$]) were employed as reaction media for the transesterification of n-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor. The conversion yield was increased around $10\%$ in a water/[BMIM][$Tf_{2}N$] bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][$Tf_{2}N$] system. Partition coefficients of the substrates in the water/[BMIM][$Tf_{2}N$] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.

Evaluation and cloning of a (R)-stereospecific esterase from Bacillus stearothermophilus JY144

  • Kim, Ji-Yeon;Kim, Yun-Jeong;Choe, Gi-Seop;Kim, Geun-Jung;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.457-460
    • /
    • 2002
  • In an effort to isolate novel strains expressing a thermostable esterase that hydrolyzed the rac-ketoprofen ethyl ester to ketoprofen in the stereospecific manner, we screened various soils and composts from broad ecological niches in which the activity was expected to be found. Three hundreds of microbial strains were tested to determine their ester-hydrolyzing activity by using an agar plate containing insoluble tributyrin as an indicative substrate, and then further screened by activity on the (R,S)-ketoprofen ethyl ester. Twenty-six strains were screened primarily at high growth and incubation temperature and further compared the ability to ethyl ester-hydrolyzing activity in terms of conversion yield and chiral specificity. Consequently, a strain JYl44 was isolated as a novel strain that produced a (R)-stereospecific esterase with high stability and systematically identified as a Bacillus stearothermophilus JY144. The enzyme indeed stables at a broad range of temperature, upto 65 $^{\circ}C$, and pH ranging from 6.0 to 10.0. The optimal temperature and pH for enzymatic conversion were 50 $^{\circ}C$ and 9.0, respectively. Based on the observations that resulted a poor cell growth, and enzyme expression in wild type strain, we further attempted the gene cloning into a general host Escherichia coli and determined its primary structure, concomitantly resulting a high level expression of the enzyme. The cloned gene had an open reading frame (250 amino acids) with a calculated molecular mass of 27.4 kDa, and its primary structure showed a relative high homology (45-52 %) to the esterases from Streptomyces and Bacillus strains. The recombinant whole cell enzyme could efficiently convert the rac-ketoprofen ethyl ester to (R)-ketoprofen, with optical purity of 99 % and yield of 49 %.

  • PDF

Ethanol Production Using Alginate Immobilized Cells of Zymomonas rnobilis (고정화 Zymomonas mobilis 균체로부터 에탄올 생산)

  • 한면수;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.588-596
    • /
    • 1992
  • The fermentation characteristics of ethanol production by the use of immobilized Zymomonas mobilis KCTC 1534 cells were investigated in terms of formation factors such as substrate and product concentration. In batch fermentation, the maximum values of specific ethanol productivity, specific substrate uptake rate, ethanol yield, and glucose conversion rate were $29.14g/{\ell}{\cdot}h$, $60.24g/{\ell}{\cdot}h$, 0.48g/g, and 98.4%, respectively, with 17% glucose medium, and its ethanol productivity was $2.91g/{\ell}{\cdot}h$ in the case of 25 hour fermentation time. Repeated batch fermentation was possible for 30 days with 2.24-$2.94g/{\ell}{\cdot}h$ ethanol productivity. In semicontinuous fermentation, the maximum ethanol productivity was shown to be $15.7g/{\ell}{\cdot}h$ at $0.36h^{-1}$ effective dilution rate with 17% glucose concentration. In this case, ethanol yield coefficient and glucose conversion rate were 0.39 g/g, 64.7%, respectively.

  • PDF

Effects of Biomass Additives on Yield of Coal Liquefaction (석탄액화시 바이오매스계 첨가제의 효과)

  • Kim, J.W.;Sim, K.S.;Lee, S.H.;Park, K.B.;Lalvani, S.B.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • The effects of some additives(black liquor, wood and lignin) on the conversion of coal and product were investigated in the lab-scale, high pressure reacting system around $375^{\circ}C$. The addition of lignin to coal during liquefaction significantly increased the depolymerization of coal and enhanced the quality of the liquid products. Coprocessing of wood and coal at $400^{\circ}C$ increased yield of liquid product about 8%, but higher temperature above $400^{\circ}C$ reduced liquid product due to increase of gas products. The addition of black liquor resulted in an enhancement in coal conversion yields, however, the observed increase is lower than that obtained in the presence of NaOH because lignin present in black liquor is not very effective due to the $OH^-$ presence.

  • PDF

Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

  • Li, Ling;Lee, Soo Jin;Yuan, Qiu Ping;Im, Wan Taek;Kim, Sun Chang;Han, Nam Soo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.412-418
    • /
    • 2018
  • Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors ${\beta}$-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific ${\beta}$-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.