• Title/Summary/Keyword: conversational AI

Search Result 52, Processing Time 0.023 seconds

A Study on Conversational AI Agent based on Continual Learning

  • Chae-Lim, Park;So-Yeop, Yoo;Ok-Ran, Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this paper, we propose a conversational AI agent based on continual learning that can continuously learn and grow with new data over time. A continual learning-based conversational AI agent consists of three main components: Task manager, User attribute extraction, and Auto-growing knowledge graph. When a task manager finds new data during a conversation with a user, it creates a new task with previously learned knowledge. The user attribute extraction model extracts the user's characteristics from the new task, and the auto-growing knowledge graph continuously learns the new external knowledge. Unlike the existing conversational AI agents that learned based on a limited dataset, our proposed method enables conversations based on continuous user attribute learning and knowledge learning. A conversational AI agent with continual learning technology can respond personally as conversations with users accumulate. And it can respond to new knowledge continuously. This paper validate the possibility of our proposed method through experiments on performance changes in dialogue generation models over time.

A Study on the Service Integration of Traditional Chatbot and ChatGPT (전통적인 챗봇과 ChatGPT 연계 서비스 방안 연구)

  • Cheonsu Jeong
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.4
    • /
    • pp.11-28
    • /
    • 2023
  • This paper proposes a method of integrating ChatGPT with traditional chatbot systems to enhance conversational artificial intelligence(AI) and create more efficient conversational systems. Traditional chatbot systems are primarily based on classification models and are limited to intent classification and simple response generation. In contrast, ChatGPT is a state-of-the-art AI technology for natural language generation, which can generate more natural and fluent conversations. In this paper, we analyze the business service areas that can be integrated with ChatGPT and traditional chatbots, and present methods for conducting conversational scenarios through case studies of service types. Additionally, we suggest ways to integrate ChatGPT with traditional chatbot systems for intent recognition, conversation flow control, and response generation. We provide a practical implementation example of how to integrate ChatGPT with traditional chatbots, making it easier to understand and build integration methods and actively utilize ChatGPT with existing chatbots.

Trends in the AI-based Banking Conversational Agents Literature: A Bibliometric Review

  • Eden Samuel Parthiban;Mohd. Adil
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.702-736
    • /
    • 2023
  • Artificial Intelligence (AI) and the technologies powered by AI fuel the fourth industrial revolution. Being the primary adopter of such innovations, banking has recently started using the most common AI-based technology, i.e., conversational agents. Although research extensively focuses on this niche area and provides bibliometric understanding for such agents in other industries, a similar review with scientometric insights of the banking literature concerning AI conversational agents is absent till date. Furthermore, in the era following the pandemic, banks are faced with the imperative to provide solutions that align with the changing landscape of remote consumer behavior. As a result, banks are proactively integrating technology-driven solutions, such as automated agents, to effectively address the growing demand for remote customer support. Hence more research is needed to perfect such agents. In order to bridge these existing gaps, the present study undertook a comprehensive examination of two decades' worth of banking literature. A meticulous review was conducted, analyzing approximately 116 papers published from 2003 to 2023. The aim was to provide a scientometric overview of the topic, catering to the research needs of both academic and industrial professionals. Holistically, the study seeks to present a macro-view about the existing trends in AI based banking conversational agents' literature while focusing on quantity, qualitative and structural indicators that are effectively necessary to offer new directions for the AI-based banking solutions. Our study, therefore, presents insights surrounding the literature, using selected techniques related to performance analysis and science mapping.

A Study on the Understanding and Effective Use of Generative Artificial Intelligence

  • Ju Hyun Jeon
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2023
  • This study would investigate the generative AIs currently in service in the era of hyperscale AIs and explore measures for the use of generative AIs, focusing on 'ChatGPT,' which has received attention as a leader of generative AIs. Among the various generative AIs, this study selected ChatGPT, which has rich application cases to conduct research, investigation, and use. This study investigated the concept, learning principle, and features of ChatGPT, identified the algorithm of conversational AI as one of the specific cases and checked how it is used. In addition, by comparing various cases of the application of conversational AIs such as Google's Bard and MS's NewBing, this study sought efficient ways to utilize them through the collected cases and conducted research on the limitations of conversational AI and precautions for its use. If connected to city-related databases, it can provide information on city infrastructure, transportation systems, and public services, so residents can easily get the information they need. We want to apply this research to enrich the lives of our citizens.

Evaluating Conversational AI Systems for Responsible Integration in Education: A Comprehensive Framework

  • Utkarch Mittal;Namjae Cho;Giseob Yu
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.149-163
    • /
    • 2024
  • As conversational AI systems such as ChatGPT have become more advanced, researchers are exploring ways to use them in education. However, we need effective ways to evaluate these systems before allowing them to help teach students. This study proposes a detailed framework for testing conversational AI across three important criteria as follow. First, specialized benchmarks that measure skills include giving clear explanations, adapting to context during long dialogues, and maintaining a consistent teaching personality. Second, adaptive standards check whether the systems meet the ethical requirements of privacy, fairness, and transparency. These standards are regularly updated to match societal expectations. Lastly, evaluations were conducted from three perspectives: technical accuracy on test datasets, performance during simulations with groups of virtual students, and feedback from real students and teachers using the system. This framework provides a robust methodology for identifying strengths and weaknesses of conversational AI before its deployment in schools. It emphasizes assessments tailored to the critical qualities of dialogic intelligence, user-centric metrics capturing real-world impact, and ethical alignment through participatory design. Responsible innovation by AI assistants requires evidence that they can enhance accessible, engaging, and personalized education without disrupting teaching effectiveness or student agency.

A Study on the UX-based Ethical AI-Learning Model for Metaverse (UX-기반 메타버스 윤리적 AI 학습 모델 연구)

  • Ahn, Sunghee
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.694-702
    • /
    • 2022
  • This paper is the UX-based technology strategy research which is a solution to how conversational AI can be ethically evolved in the Metaverse environment. Since conversational AI influences people's on-offline decision-making factors through interaction with people, the Metaverse AI ethics must be reflected. In the machine learning process of conversational AI, cultural codes along with user's personal experience data must be included and considered to reduce the error value of user experience. Through this, the super-personalized Metaverse service can evolve ethically with social values. With above hypothesis as a result of the study, a conceptual model of a forward-looking perspective was developed and proposed by adding user experience data to the machine learning (ML) process for context-based interactive AI in the Metaverse service environment.

Over the Rainbow: How to Fly over with ChatGPT in Tourism

  • Taekyung Kim
    • Journal of Smart Tourism
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Tourism and hospitality have encountered significant changes in recent years as a result of the rapid development of information technology (IT). Customers now expect more expedient services and customized travel experiences, which has intensified competition among service providers. To meet these demands, businesses have adopted sophisticated IT applications such as ChatGPT, which enables real-time interaction with consumers and provides recommendations based on their preferences. This paper focuses on the AI support-prompt middleware system, which functions as a mediator between generative AI and human users, and discusses two operational rules associated with it. The first rule is the Information Processing Rule, which requires the middleware system to determine appropriate responses based on the context of the conversation using techniques for natural language processing. The second rule is the Information Presentation Rule, which requires the middleware system to choose an appropriate language style and conversational attitude based on the gravity of the topic or the conversational context. These rules are essential for guaranteeing that the middleware system can fathom user intent and respond appropriately in various conversational contexts. This study contributes to the planning and analysis of service design by deriving design rules for middleware systems to incorporate artificial intelligence into tourism services. By comprehending the operation of AI support-prompt middleware systems, service providers can design more effective and efficient AI-driven tourism services, thereby improving the customer experience and obtaining a market advantage.

A Study on User Continuance Intention of Conversational Generative AI Services: Focused on Task-Technology Fit (TTF) and Trust (대화형 생성AI 서비스 사용자의 지속사용의도에 관한 연구: 과업-기술적합(TTF)과 신뢰를 중심으로)

  • Seunggyu Ann;Hyunchul Ahn
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.193-218
    • /
    • 2024
  • This study identified factors related to the technological characteristics of conversational generative AI services and the user's task characteristics. Then, it analyzed the effects of task-technology fit on user satisfaction and continued use. The effects of trust, which represents the degree of users' belief in the information provided by generative AI, on task-technology fit, user satisfaction, and user continuance intention were also examined. A survey was conducted among users of various age groups, and 198 questionnaires were collected and analyzed using SmartPLS 4.0 to validate the proposed model. As a result of hypothesis testing, it was confirmed that language fluency and interactivity among technology characteristics and ambiguity among task characteristics significantly affect user satisfaction and intention to continue using via task-technology fit. However, creativity among skill characteristics and time flexibility among task characteristics did not significantly affect task-technology fit, and trust did not directly affect task-technology fit and intention to continue using, but only positively affected user satisfaction. The results of this study can provide meaningful implications for vendors who want to develop and provide conversational generative AI services or companies who want to adopt generative AI technology to improve business productivity.

Error Analysis of Recent Conversational Agent-based Commercialization Education Platform (최신 대화형 에이전트 기반 상용화 교육 플랫폼 오류 분석)

  • Lee, Seungjun;Park, Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.11-22
    • /
    • 2022
  • Recently, research and development using various Artificial Intelligence (AI) technologies are being conducted in the field of education. Among the AI in Education (AIEd), conversational agents are not limited by time and space, and can learn more effectively by combining them with various AI technologies such as voice recognition and translation. This paper conducted a trend analysis on platforms that have a large number of users and used conversational agents for English learning among commercialized application. Currently commercialized educational platforms using conversational agent through trend analysis has several limitations and problems. To analyze specific problems and limitations, a comparative experiment was conducted with the latest pre-trained large-capacity dialogue model. Sensibleness and Specificity Average (SSA) human evaluation was conducted to evaluate conversational human-likeness. Based on the experiment, this paper propose the need for trained with large-capacity parameters dialogue models, educational data, and information retrieval functions for effective English conversation learning.

A Study on the RPA Interface Method for Hybrid AI Chatbot Implementation (하이브리드 AI 챗봇 구현을 위한 RPA연계 방안 연구)

  • Cheonsu, Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2023
  • Recently, as the Coronavirus disease 2019 (COVID-19) prolongs along with the development of artificial intelligence technology, a non-contact society has become commonplace. Many companies are promoting digital transformation and the activation of artificial intelligence introduction to respond to this which leads to dramatic increase of demand for Chatbot. In addition, a Chatbot has reached the point of processing business transactions from responding simple inquiries. However, it is necessary to develop an API to interface with the legacy system and there are many difficulties in connecting. To solve this, it is becoming important to establish a hybrid Chatbot environment through RPA interface. Recently, the combination of RPA and Chatbot is considered an effective tool for handling many business processes. But, there are many difficulties due to the lack of interface cases and the difficulty in finding a method to development them. This study suggests a method for building a hybrid Chatbot which is an interface Chatbot(Conversational UX) and RPA(Task Automation) from the perspective of hyper-automation based on actual development cases and review of literature review is presented, so that the interface method can be understood and develop more easily. Therefore, there are implications for actively using AI Chatbot for digital transformation.