• 제목/요약/키워드: convergence approach

검색결과 2,190건 처리시간 0.041초

Distributed Carrier Aggregation in Small Cell Networks: A Game-theoretic Approach

  • Zhang, Yuanhui;Kan, Chunrong;Xu, Kun;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4799-4818
    • /
    • 2015
  • In this paper, we investigate the problem of achieving global optimization for distributed carrier aggregation (CA) in small cell networks, using a game theoretic solution. To cope with the local interference and the distinct cost of intra-band and inter-band CA, we propose a non-cooperation game which is proved as an exact potential game. Furthermore, we propose a spatial adaptive play learning algorithm with heterogeneous learning parameters to converge towards NE of the game. In this algorithm, heterogeneous learning parameters are introduced to accelerate the convergence speed. It is shown that with the proposed game-theoretic approach, global optimization is achieved with local information exchange. Simulation results validate the effectivity of the proposed game-theoretic CA approach.

New criteria to fix number of hidden neurons in multilayer perceptron networks for wind speed prediction

  • Sheela, K. Gnana;Deepa, S.N.
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.619-631
    • /
    • 2014
  • This paper proposes new criteria to fix hidden neuron in Multilayer Perceptron Networks for wind speed prediction in renewable energy systems. To fix hidden neurons, 101 various criteria are examined based on the estimated mean squared error. The results show that proposed approach performs better in terms of testing mean squared errors. The convergence analysis is performed for the various proposed criteria. Mean squared error is used as an indicator for fixing neuron in hidden layer. The proposed criteria find solution to fix hidden neuron in neural networks. This approach is effective, accurate with minimal error than other approaches. The significance of increasing the number of hidden neurons in multilayer perceptron network is also analyzed using these criteria. To verify the effectiveness of the proposed method, simulations were conducted on real time wind data. Simulations infer that with minimum mean squared error the proposed approach can be used for wind speed prediction in renewable energy systems.

A NEW APPROACH TO SOLVING OPTIMAL INNER CONTROL OF LINEAR PARABOLIC PDES PROBLEM

  • Mahmoudi, M.;Kamyad, A.V.;Effati, S.
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.719-728
    • /
    • 2012
  • In this paper, we develop a numerical method to solving an optimal control problem, which is governed by a parabolic partial differential equations(PDEs). Our approach is to approximate the PDE problem to initial value problem(IVP) in $\mathbb{R}$. Then, the homogeneous part of IVP is solved using semigroup theory. In the next step, the convergence of this approach is verified by properties of one-parameter semigroup theory. In the rest of paper, the original optimal control problem is solved by utilizing the solution of homogeneous part. Finally one numerical example is given.

A Coordinated Heuristic Approach for Virtual Network Embedding in Cloud Infrastructure

  • Nia, Nahid Hamzehee;Adabi, Sepideh;Nategh, Majid Nikougoftar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2346-2361
    • /
    • 2017
  • A major challenge in cloud infrastructure is the efficient allocation of virtual network elements on top of substrate network elements. Path algebra is a mathematical framework which allows the validation and convergence analysis of the mono-constraint or multi-constraint routing problems independently of the network topology or size. The present study proposes a new heuristic approach based on mathematical framework "paths algebra" to map virtual nodes and links to substrate nodes and paths in cloud. In this approach, we define a measure criterion to rank the substrate nodes, and map the virtual nodes to substrate nodes according to their ranks by using a greedy algorithm. In addition, considering multi-constraint routing in virtual link mapping stage, the used paths algebra framework allows a more flexible and extendable embedding. Obtained results of simulations show appropriate improvement in acceptance ratio of virtual networks and cost incurred by the infrastructure networks.

Design of an Advanced CMOS Power Amplifier

  • Kim, Bumman;Park, Byungjoon;Jin, Sangsu
    • Journal of electromagnetic engineering and science
    • /
    • 제15권2호
    • /
    • pp.63-75
    • /
    • 2015
  • The CMOS power amplifier (PA) is a promising solution for highly-integrated transmitters in a single chip. However, the implementation of PAs using the CMOS process is a major challenge because of the inferior characteristics of CMOS devices. This paper focuses on improvements to the efficiency and linearity of CMOS PAs for modern wireless communication systems incorporating high peak-to-average ratio signals. Additionally, an envelope tracking supply modulator is applied to the CMOS PA for further performance improvement. The first approach is enhancing the efficiency by waveform engineering. In the second approach, linearization using adaptive bias circuit and harmonic control for wideband signals is performed. In the third approach, a CMOS PA with dynamic auxiliary circuits is employed in an optimized envelope tracking (ET) operation. Using the proposed techniques, a fully integrated CMOS ET PA achieves competitive performance, suitable for employment in a real system.

Applying Clustering Approach to Mobile Content-Centric Networking (CCN) Environment

  • Saad, Muhammad;Choi, Seungoh;Roh, Byeong-hee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.450-451
    • /
    • 2013
  • Considering the recent few years, the usage of mobile content has increased rapidly. This brings out the need for the new internet paradigm. Content-Centric Networking (CCN) caters this need as the future internet paradigm. However, so far, the issue of mobility in the network using CCN has not been considered very efficiently. In this paper, we propose clustering in the network. We apply clustered approach to CCN for catering the mobility of client node in the network. Through this approach we achieve better convergence time and control overhead in contrast to the basic CCN.

Emotional Correlation Test from Binary Gender Perspective using Kansei Engineering Approach on IVML Prototype

  • Nur Faraha Mohd, Naim;Mintae, Hwang
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.68-74
    • /
    • 2023
  • This study examines the response of users' feelings from a gender perspective toward interactive video mobile learning (IVML). An IVML prototype was developed for the Android platform allowing users to install and make use of the app for m-learning purposes. This study aims to measure the level of feelings toward the IVML prototype and examine the differences in gender perspectives, identify the most responsive feelings between male, and female users as prominent feelings and measure the correlation between user-friendly feeling traits as an independent variable in accordance with gender attributes. The feelings response could then be extracted from the user experience, user interface, and human-computer interaction based on gender perspectives using the Kansei engineering approach as the measurement method. The statistical results demonstrated the different emotional reactions from a male and female perspective toward the IVML prototype may or may not have a correlation with the user-friendly trait, perhaps having a similar emotional response from one to another.

Optimal Control Approach for a Smart Grid

  • Imen Amdouni;Naziha Labiadh;Lilia El amraoui
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.194-198
    • /
    • 2023
  • The current electricity networks will undergo profound changes in the years to come to be able to meet the growing demand for electricity, while minimizing the costs of consumers and producers, etc. The electricity network of tomorrow or even the intelligent « Smart Grids » network will be the convergence of two networks: the electricity network and the telecommunications network. In this context falls our work which aims to study the impact of the integration of energy decentralization into the electricity network. In this sense, we have implemented a new smart grid model where several coexisting suppliers can exchange information with consumers in real time. In addition, a new approach to energy distribution optimization has been developed. The simulation results prove the effectiveness of this approach in improving energy exchange and minimizing consumer purchase costs and line losses.

확률론적 의사결정기법을 이용한 태양광 발전 시스템의 고장검출 알고리즘 (Fault Detection Algorithm of Photovoltaic Power Systems using Stochastic Decision Making Approach)

  • 조현철;이관호
    • 융합신호처리학회논문지
    • /
    • 제12권3호
    • /
    • pp.212-216
    • /
    • 2011
  • 태양광 발전 시스템의 고장검출은 고장으로 인해 발생되는 기술적 및 경제적 손실을 최대한 줄이기 위한 첨단 기술로 각광을 받고 있다. 본 논문은 푸리에 신경회로망과 확률론적 의사결정법을 이용한 태양광 발전 시스템의 새로운 고장진단 알고리즘을 제안한다. 우선 태양광 시스템의 동적 모델링을 위하여 최급강하 기반 최적화 기법을 통해 신경회로망 모델을 구성하며 GLRT 알고리즘을 이용하여 태양광 시스템의 확률론적 고장검출 기법을 제안한다. 제안한 고장검출 알고리즘의 타당성 검증을 위하여 태양광 고장검출 테스트베드를 제작하여 실시간 실험을 실시하였으며 이 때 태양광으로부터의 신호는 직류 전력선 통신을 이용하였다.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.