• Title/Summary/Keyword: conventional recursive least squares

Search Result 24, Processing Time 0.032 seconds

Blind Channel Estimation Under the Time-Invariant Channel Environment (시불변 채널 환경에서의 블라인드 채널 추정)

  • Lee, Gwang-Seok;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.559-562
    • /
    • 2011
  • In this research, We derived Recursive Least Squares(RLS) algorithm with adaptive maximum-likelihood channel estimate for digital pulse amplitude modulated sequence in the presence of intersymbol interference and additive white Gaussian noise. RLS algorithms have better convergence characteristics than conventional algorithms, LMS (Least Mean Squares) algorithms.

  • PDF

Probabilistic damage detection of structures with uncertainties under unknown excitations based on Parametric Kalman filter with unknown Input

  • Liu, Lijun;Su, Han;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.779-788
    • /
    • 2017
  • System identification and damage detection for structural health monitoring have received considerable attention. Various time domain analysis methodologies based on measured vibration data of structures have been proposed. Among them, recursive least-squares estimation of structural parameters which is also known as parametric Kalman filter (PKF) approach has been studied. However, the conventional PKF requires that all the external excitations (inputs) be available. On the other hand, structural uncertainties are inevitable for civil infrastructures, it is necessary to develop approaches for probabilistic damage detection of structures. In this paper, a parametric Kalman filter with unknown inputs (PKF-UI) is proposed for the simultaneous identification of structural parameters and the unmeasured external inputs. Analytical recursive formulations of the proposed PKF-UI are derived based on the conventional PKF. Two scenarios of linear observation equations and nonlinear observation equations are discussed, respectively. Such a straightforward derivation of PKF-UI is not available in the literature. Then, the proposed PKF-UI is utilized for probabilistic damage detection of structures by considering the uncertainties of structural parameters. Structural damage index and the damage probability are derived from the statistical values of the identified structural parameters of intact and damaged structure. Some numerical examples are used to validate the proposed method.

Tunnel Ventilation Controller Design Employing RLS-Based Natural Actor-Critic Algorithm (RLS 기반의 Natural Actor-Critic 알고리즘을 이용한 터널 환기제어기 설계)

  • Chu B.;Kim D.;Hong D.;Park J.;Chung J.T.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.53-54
    • /
    • 2006
  • The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  • PDF

Implementation of Self-Tuning Speed Controller for DC Motor Drive System using RLS Algorithm and Pole-Placement Method (RLS 알고리즘과 극점배치방법을 이용한 DC전동기의 자기동조 속도제어기의 구현)

  • Cha, Eung-Seok;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.488-490
    • /
    • 1999
  • This paper describes the design of self-tuning speed controller for DC motor drive system using RLS(Recursive Least Squares) algorithm and Pole-Placement method. The model parameters, related to inertia and damping coefficient of motor, are estimated on-line by using RLS estimation algorithm. And a control signal is calculated by using pole placement method. Simulation and experimental results show that the proposed controller possesses excellent adaptation capability than a conventional PI/IP controller under parameter change.

  • PDF

Predictive Control for a Fin Stabilizer

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Fang, Tae-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.597-603
    • /
    • 2007
  • A predictive controller can solve a control problem related to a disturbance-dominant system such as roll stabilization of a ship in waves. In this paper, a predictive controller is developed for a fin stabilizer. Future wave-induced moment is modeled simply using two typical regular wave components for which six parameters are identified by the recursive Fourier transform and the least squares method using the past time series of the roll motion. After predicting the future wave-induced moment, optimal control theory is applied to discover the most effective command fin angle that will stabilize the roll motion. In the results, wave prediction performance is investigated, and the effectiveness of the predictive controller is compared to a conventional PD controller.

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

  • Yao, Wei;Jiang, L.;Fang, Jiakun;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal in each sampling interval. Case studies are undertaken on a two-area four-machine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided.

A Study on the Modified RLS Algorithm Using Orthogonal Input Vectors (직교 입력 벡터를 이용하는 수정된 RLS 알고리즘에 관한 연구)

  • Ahn, Bong Man;Kim, Kwang Woong;Ahn, Hyun Gyu;Han, Byoung Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • This paper proposes an easy algorithm for finding tapped-delay-line (TDL) filter coefficients in an adaptive filter algorithm using orthogonal input signals. The proposed algorithm can be used to obtain the coefficients and errors of a TDL filter without using an inverse orthogonalization process for the orthogonal input signals. The form of the proposed algorithm in this paper has the advantages of being easy to use and similar to the familiar recursive least-squares (RLS) algorithm. In order to evaluate the proposed algorithm, system identification simulation of the $11^{th}$-order finite-impulse-response (FIR) filter was performed. It is shown that the convergence characteristics of the learning curve and the tracking ability of the coefficient vectors are similar to those of the conventional RLS analysis. Also, the derived equations and computer simulation results ensure that the proposed algorithm can be used in a similar manner to the Levinson-Durbin algorithm.

Interference Cancellation for Wireless LAN Systems Using Full Duplex Communications (전이중 통신 방식을 사용하는 무선랜을 위한 간섭 제거 기법)

  • Han, Suyong;Song, Choonggeun;Choi, Jihoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2353-2362
    • /
    • 2015
  • In this paper, we employ the single channel full duplex radio for wireless local area network (WLAN) systems, and design digital interference cancellers using adaptive signal processing. When the full duplex scheme is used for WLAN systems with multiple transmit and receive antennas, some interference is caused through the feedback of transmit signals from multiple antennas. To remove the feedback interference, we derive the least mean square (LMS), normalized LMS (NLMS), and recursive least squares (RLS) algorithms based on adaptive signal processing techniques. In addition, we analyze the theoretical convergence of the proposed LMS and RLS methods. The channel capacity of full duplex radios increases by two times than that of half duplex radios, when the packet error rate (PER) performances for the two systems are identical. Through numerical simulations in WLAN systems, it is shown that the full duplex method with the proposed interference cancellers has a similar PER performance with the conventional half duplex transmission scheme.

An Efficient Adaptive Digital Filtering Algorithm for Identification of Second Order Volterra Systems (이차 볼테라 시스템 인식을 위한 효율적인 적응 디지탈 필터링 알고리즘)

  • Hwang, Y.S.;Mathews, V.J.;Cha, I.W.;Youn, D.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.98-109
    • /
    • 1988
  • This paper introduces an adaptive nonlinear filtering algorithm that uses the sequential regression(SER) method to update the second order Volterra filter coefficients in a recursive way. Conventionally, the SER method has been used to invert large matrices which result from direct application of Wiener filter theory to the Volterra filter. However, the algorithm proposed in this paper uses the SER approach to update the least squares solution which is derived for Gaussian input signals. In such an algorithm, the size of the matrix to be inverted is smaller than that of conventional approaches, and hence the proposed method is computationally simpler than conventional nonlinear system identification techniques. Simulation results are presented to demonstrate the performance of the proposed algorithm.

  • PDF