• Title/Summary/Keyword: conventional point monitoring

Search Result 67, Processing Time 0.033 seconds

Deflection Estimation of a PSC Railroad Girder using Long-gauge Fiber Optic Sensors (Long-gauge 광섬유 센서를 이용한 철도교 PSC 거더의 처짐유추)

  • Chung Won-Seok;Kim Sung-Il;Kim Nam-Sik;Lee Hee-Up
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.467-472
    • /
    • 2006
  • This paper deals with the applicability of long-gauge deformation fiber optic sensors (FOS) to prestressed concrete structures. A main motivation is the desire to monitor the deflection of the railway bridges without intervenes of the signal intensity fluctuations. A 25 m long, 1.8 m deep PSC girder was fabricated compositely with 22 cm thick reinforced concrete deck. Two pairs of 3 m long-gauge sensors are attached to the prestressed concrete girder with parallel topology. Using the relationship between curvature and vortical deflection and the quadratic regression of curvatures at the discrete point, it is possible to extrapolate the deflection curve of the girder. The estimated deflection based on the developed method is compared with the results using conventional strain gauges and LVDTS. It has been demonstrated that the proposed instrumentation technique is capable of estimating the vertical deflection and neutral axis position of the prestressed concrete girder up to weak nonlinear region.

ORTHORECTIFICATION OF A DIGITAL AERIAL IMAGE USING LIDAR-DRIVEN ELEVATION INFORMATION

  • Yoon, Jong-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.181-184
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study sequentially utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using DTM and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

  • PDF

Development of thin-film liquid-level sensors using AC heating method (교류 가열법을 이용한 박막 액체 레벨 센서 개발)

  • Hong, Jong-Gan;Choi, Sun-Rock;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1842-1846
    • /
    • 2008
  • This work reports development of novel liquid-level sensors based on the $3{\omega}$ method. The sensors determine the liquid level by measuring the thermal response as in the conventional hot-wire technique. However the sensors employ an AC heating method to enhance the sensitivity, noise resistance and time response. Also, the microfabricated thin-film structure of the sensor provides mass-producibility as well as improved sensor performance owing to the increase in the surface-volume ratio of the sensor. Two different types of the sensor are developed: one for point detection of the fluid phase and the other for monitoring continuous variation of liquid level. Notable is that the performance of the sensor is not considerably affected by the liquid flow.

  • PDF

Characteristics of Abutment Slopes of Four Dams in Korea (우리나라 주요 댐 좌우안 사면의 특징)

  • 신동훈;이종욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.183-195
    • /
    • 2000
  • Slopes near a dam body can be categorized into 4 groups, such as right and left abutment slopes, reservoir slopes, slopes along the access road and slopes along the relocated road. For each of the geological investigation, the design standards, the evaluation methods of safety and the maintenance methods, both abutment slopes in the four dams have different characteristics from the conventional cut slopes in that they can severely affect the dam safety. From this point of view this study compares and analyzes the geological investigation methods, the status of design and construction, evaluation method of safety, and monitoring & maintaining methods for four major dams in Korea, such as Soyanggang dam, 'Andong dam, Chungju dam and Boryong dam.

  • PDF

A Novel Partial Shading Detection Algorithm Utilizing Power Level Monitoring

  • Wellawatta, Thusitha;Seo, Young-Tae;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.136-137
    • /
    • 2017
  • Maximum power point tracking (MPPT) under partial shading condition (PSC) is a challenging process in the PV array system. The shaded PV panel makes different peak patterns on the P-V curve and misguides the MPPT algorithm. Various kinds of global MPP (GMPP) detecting algorithms are used to overcome this issue. Generally, too frequent execution of GMPP tracking algorithm reduces the achievable power of PV panel due to time spent on the scanning process. Thus, partial shading detection algorithm is essential for efficient utilization of solar energy source. While conventional method only detects fast shading patterns, the proposed algorithm always shows superb performance regardless of the speed of partial shading patterns.

  • PDF

A Design of the Evaluation Devices for the Vehicle Operational Control Algorithm of Personal Rapid Transit System (개인고속이동 시스템의 차량운행제어 알고리즘 검증을 위한 모의 장치 설계에 대한 연구)

  • Lee, Jun-Ho;Shin, Kyung-Ho;Kim, Yong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1191-1192
    • /
    • 2007
  • In this paper we deal with a design of the evaluation system to assess the vehicle operational control algorithm for Personal Rapid Transit(PRT) system. PRT system is different from the conventional rail traffic system in such point that the station is off-line so as to guarantee a very short headway. In this study we propose a evaluation system to assess the performance of the proposed vehicle control algorithm. The evaluation system is composed of virtual vehicles, central control system, virtual wayside facilities, monitoring equipments. In order to test the proposed evaluation system a test algorithm is used, which has been simulated in the combined simulation system between Labview Simulation Interface Toolkit and Matlab/Simulink.

  • PDF

Ortho-rectification of a Digital Aerial Image using LiDAR-derived Elevation Model in Forested Area

  • Yoon, Jong-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using digital terrain model (DTM) and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method used in a previous research. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

EPON Based Communication Network Architecture for Offshore Wind Power Farm (EPON을 기반으로 한 해상 풍력 단지 통신망 구조)

  • Jung, Jin-Hyo;Yang, Wonhyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.130-139
    • /
    • 2013
  • In recent, the communication networks of wind power farm are becoming crucial technologies for monitoring and controlling the large-scale offshore wind power farm. In this paper, EPON based communication network architectures are proposed in order to combat the problems of conventional Ethernet based communication network such as delay, data processing overhead and the fairness of data transmission among turbines in offshore wind power farm. The proposed architecture constructs the point to multi-point network by using OLT and ONUs installed in central control center and wind turbines respectively. The EPON based communication network architecture has low cost, high reliability, and fair transmission capability. To evaluate the performance of proposed architectures, the wind power farm based on IEC 61850 is modelled by using OPNET The simulation results are analyzed and compared with conventional Ethernet based communication network in terms of the overhead, delay and fairness of data transmission.

Self-Assessment by School Foodservice Directors on Their Equipment and Sanitary Procedures, Related to Four Alternative Management Systems

  • Yoon, Hei-Ryeo;Kim, Sook-He;Yu, Choon-Hie;Song, Yo-Sook;Lee, Kyoung-Ae;Kim, Woo-Kyoung;Kim, Ju-Hyeon;Lee, Jung-Sug;Kim, Mi-Kang
    • Nutritional Sciences
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • In Korea, the school foodservice program has been expanding rapidly in recent years, partly as a result of increased government support. With the growth in the number of schools offering foodservice programs, food safety and sanitation concerns have been increasing. To assist with program improvement, a situation analysis was carried out, with the focus on equipment and sanitary management of school foodservice programs under flour different management systems. A questionnaire was mailed to the foodservice directors of 234 randomly selected schools chi[h included elementary, middle and high schools at the national level. Among them, one hundred and sixty-five responses reasonably completed were used for the analysis. This study classified each school's foodservice management into one of four types : independent-conventional, independent-commissary, contract-conventional, and contract-delivery. The results show that the monitoring of employees' health and personal hygiene, and employees' sanitary education was well conducted, but that the sanitary education of the voluntary parent workers was largely ignored. Eighty-six percent of the schools had their drinking water tested for sanitation, and the results showed that more effort is needed in careful management of drinking water in order to prevent foodborne illnesses and bacillary dysentery. In general, contract management showed lower scores in foodservice equipment and their efficiency, compared with independent management. A relatively high number of schools on the contract-delivery management system employed nurses and leachers instead of dietitians and foodservice directors. The adoption of the HACCP (Hazard Analysis Critical Control Point) system was lowest in contract-conventional and contract-delivery management systems, and highest in elementary schools using the independent-conventional system.

Real-Time Spacer Etch-End Point Detection (SE-EPD) for Self-aligned Double Patterning (SADP) Process

  • Han, Ah-Reum;Lee, Ho-Jae;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.436-437
    • /
    • 2012
  • Double patterning technology (DPT) has been suggested as a promising candidates of the next generation lithography technology in FLASH and DRAM manufacturing in sub-40nm technology node. DPT enables to overcome the physical limitation of optical lithography, and it is expected to be continued as long as e-beam lithography takes place in manufacturing. Several different processes for DPT are currently available in practice, and they are litho-litho-etch (LLE), litho-etch-litho-etch (LELE), litho-freeze-litho-etch (LFLE), and self-aligned double patterning (SADP) [1]. The self-aligned approach is regarded as more suitable for mass production, but it requires precise control of sidewall space etch profile for the exact definition of hard mask layer. In this paper, we propose etch end point detection (EPD) in spacer etching to precisely control sidewall profile in SADP. Conventional etch EPD notify the end point after or on-set of a layer being etched is removed, but the EPD in spacer etch should land-off exactly after surface removal while the spacer is still remained. Precise control of real-time in-situ EPD may help to control the size of spacer to realize desired pattern geometry. To demonstrate the capability of spacer-etch EPD, we fabricated metal line structure on silicon dioxide layer and spacer deposition layer with silicon nitride. While blanket etch of the spacer layer takes place in inductively coupled plasma-reactive ion etching (ICP-RIE), in-situ monitoring of plasma chemistry is performed using optical emission spectroscopy (OES), and the acquired data is stored in a local computer. Through offline analysis of the acquired OES data with respect to etch gas and by-product chemistry, a representative EPD time traces signal is derived. We found that the SE-EPD is useful for precise control of spacer etching in DPT, and we are continuously developing real-time SE-EPD methodology employing cumulative sum (CUSUM) control chart [2].

  • PDF