• Title/Summary/Keyword: conventional heating

Search Result 689, Processing Time 0.034 seconds

Effect of Ohmic Heating at Subgelatinization Temperatures on Thermal-property of Potato Starch (호화점 이하에서 옴가열이 감자 전분의 열적특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.1068-1074
    • /
    • 2012
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside of food when electrical current is flown into. In other study, we researched about soybean protein's characteristic changes by ohmic heating. Nevertheless treated same temperature, denaturation of soybean protein were accelerated by ohmic heating than conventional heating. In this time, we studied thermal property change of potato starch by ohmic heating besides conventional heating. For this purpose, potato starch was heated at same subgelatinization temperature by ohmic and conventional heating. And thermal properties were tested using DSC. Annealing of starch is heat treatment method that heated at 3~4% below the gelatinization point. DSC analysis results of this study, the $T_o$, $T_p$, $T_c$ of potato starch levels were increased, whereas $T_c{\sim}T_o$ was narrowed. This thermal property changes appear similar to annealing's result. It is thought the results shown in this study, because the heating from below the gelatinization point. 6, 12, 24, 72, and 120 hours heating at $55^{\circ}C$ for potato starch, $T_o$, $T_p$, $T_c$ values continue to increased with heating time increase. The gelatinization temperature of raw potato starch was $65.9^{\circ}C$ and the treated starch by conventional heating at $55^{\circ}C$ for 120 hr was $72^{\circ}C$, ohmic was $76^{\circ}C$. The gelatinization range of conventional (72 hr) was $10^{\circ}C$, ohmic was $8^{\circ}C$. In case of 24 hours heating at 45, 50, 55, 60, $65^{\circ}C$ for potato starch, the result was similar to before. $T_o$, $T_p$, $T_c$ values continue to increased and gelatinization range narrowed with heating temperature increase. In case of conventional heating at $60^{\circ}C$, the results of gelatinization temperature and range were $70.1^{\circ}C$ and $9.1^{\circ}C$. And ohmic were $74.4^{\circ}C$ and $7.5^{\circ}C$. When viewed through the results of the above, the internal structure of starch heated by ohmic heating was found that the shift to a more stable form and to increase the homology of the starch internal structure.

Effect of Ohmic Heating on Thermal and Water Holding Property of Starches (옴가열이 전분의 열적 특성과 흡수력에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.1
    • /
    • pp.112-119
    • /
    • 2014
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch's thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. Herein, we have studied thermal property changes of wheat, corn, potato and sweet potato starch by ohmic heating as well as conventional heating. And then we measure the water holding capacity of starches. Annealing of starch is a heat treatment method heated at 3~4% below the gelatinization point. This treatment changes the starch's thermal property. In the DSC analysis of this study, the $T_o$, $T_p$, $T_c$ of all starch levels have increased, and the $T_c$-$T_o$ narrowed. In the ohmic heating, the treatment sample is extensively changed but not with the conventional heating. From the ohmic treatment, increases from gelatinization temperature are potato ($8.3^{\circ}C$) > wheat ($5.3^{\circ}C$) > corn ($4.9^{\circ}C$) > sweet potato ($4.5^{\circ}C$), and gelatinization ranges are potato ($7.9^{\circ}C$), wheat ($7.5^{\circ}C$), corn ($6.1^{\circ}C$) and sweet potato ($6.8^{\circ}C$). In the case of conventional treatment, water holding capacity is not changed with increasing temperature but the ohmic heating is increased. Water holding capacity is related to the degree of gelatinization for starch. This result show that when treated with below gelatinization temperature, the starches are partly gelatined by ohmic treatment. When viewing the results of the above, ohmic treatment is enhanced by heating and generating electric currents to the starch structure.

Effect of Ohmic Heating on Pasting Property of Starches (옴가열이 전분의 Pasting 특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.689-695
    • /
    • 2017
  • Ohmic heating is an internal heating method based on the principle that when an electrical current passes through food, electric resistance heat is uniformly generated internally by food resistance. Previous studies indicate that the thermal properties, external structure, internal structure, and swelling power of ohmic heat treated starch of various starches, such as potato, wheat, corn, and sweet potato, differed from those of conventional heating at the same temperature. In this study, the pasting property of starch, treated with ohmic and conventional heating, were measured by RVA (Rapid Visco-Analyzer). Our results show that as the ohmic heating temperature increased, the PV (Paste Viscosity) of the starch decreased significantly, and the PT (Pasting Temperature) increased. Changes in PV and PT indicate that the swelling of starch remains unchanged by ohm heating. The HPV (Hot Paste Viscosity), CPV (Cold Paste Viscosity) and SV (Setback Viscosity) of ohmic heated starch also differed from the conventional heated starch. The pasting property is similar to the viscosity curve of common cross-linked modified starch. In this experiment, we further confirm the similarity with modified starch and its usability.

Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating (마이크로파를 이용한 다시마의 산 가수분해와 에탄올 생산성: 재래식 가열과 비교)

  • Song, Myoung-Ki;Na, Choon-Ki
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 2013
  • The efficiency of microwave-assisted acid hydrolysis of seaweeds for the production of ethanol was investigated and its effect on hydrolysis into reducing sugar and fermentation into ethanol evaluated as compared with those by conventional heating. A brown seaweed, Laminaria japonica (10-100g/L) was hydrolysed under dilute acidic condition (0.5N $H_2SO_4$, $100^{\circ}C$) with two sorts of heating: microwave irradiation for ${\leq}10min$ and conventional heating for 10-60min. Microwave-assisted hydrolysis was shown to be more efficient. A similar range of reducing sugar and ethanol yields as with the conventional autoclave heating procedure(${\geq}30min$) was observed, but it was obvious that production of ethanol from microwave-assisted hydrolysis had a 3 times faster reaction rate leading to very short production times, lower energy consumption/loss than from the conventional heating mode, and higher biomass loading without significant reducing ethanol yield, thus microwave-assisted acid hydrolysis is a potential alternative method for more effective hydrolysis of Laminaria japonica.

Effect of Floor Heating System on Housing Environment and Performance in Broiler Production (바닥난방이 육계의 사육환경 및 생산성에 미치는 영향)

  • 최희철;이덕수;서옥석;한정대;강희설;권두중;곽정훈;강보석;장병귀
    • Korean Journal of Poultry Science
    • /
    • v.26 no.3
    • /
    • pp.189-193
    • /
    • 1999
  • This experiment was conducted to investigate the effect of floor heating system on housing environment and performance in broiler production. PVC heating pipes(in 25cm spacing) were covered with concrete under the litter. Floor heating system was compared with conventional direct heating system. Each treatment had two replicates of 110 birds each. Litter moisture content was significantly reduced in floor heating system than conventional direct heating system(P〈0.05). Dust concentration was higher in floor heating system because of low litter moisture content. CO$_2$concentration was 2,900ppm and 1,500ppm on the direct heating system and floor heating system, respectively at the age of 1 week. Body weight was significantly higher in floor heating system at 7 weeks of age(P〈0.05). The results of the trial show that floor heating was useful heating system for broiler production.

  • PDF

Effect of Ohmic Heating on External and Internal Structure of Starches (옴가열이 전분의 외부와 내부 구조에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.1
    • /
    • pp.126-133
    • /
    • 2015
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch's thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. This result is appeared equally at wheat, corn and sweet potato starch. At this study, we treated potato, wheat, corn and sweet potato starch by ohmic/conventional method and observed change of external structure by microscope and internal structure by X-ray diffractometer. Conventional heated at $55^{\circ}C$ potato starch was not external structural changes. But ohmic heated potato starch is showed largely change. Some small size starch particle were broken or small particles are made of larger particle together or small particles caught up in the large particle. Changes in ohmic heated potato starch at $60^{\circ}C$ was greater. The inner matter came to an external particle burst inside and only the husk has been observed. The same change was observed in the rest of the starch. The change of internal structure of potato starch was measured using X-ray diffraction patterns. There was no significant difference between ohmic and conventional heating at $55^{\circ}C$. But almost every peak has disappeared ohmic at $60^{\circ}C$. Especially $5.4^{\circ}$ peak to represent the type B was completely gone. When viewed from the above results, external changes with change in the internal crystal structure of the starch particles were largely unknown to appear. In conclusion, during ohmic heating changes of starch due to the electric field with a change in temperature by the heating was found to have progressed at the same time.

Synthesis of NaY Zeolites by Microwave and Conventional Heating (마이크로파 및 기존 가열 방법에 의한 제올라이트 NaY의 합성)

  • Choi, Ko-Yeol;Conner, W. Curtis
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2007
  • NaY zeolites synthesized by microwave heating were compared with those obtained by conventional heating. When the same temperature increasing rates were adopted in both heating methods, the microwave heating shortened the induction period and enhanced the rate of crystallization of NaY zeolites compared with the conventional heating. Irrespective of microwave radiation, the fast temperature increasing rate also shortened the induction time and enhanced the crystallization of NaY zeolites. The crystal sizes of NaY zeolites were large under the fast temperature raise of the reaction mixture and became larger by microwave radiation. At the same time, the fast temperature increasing rate has reduced the energy consumption due to the fast completion of reaction during the synthesis of NaY zeolite. The energy consumption in the conventional ethylene glycol bath was lower than that in the microwave oven with the same temperature increasing rate in this study, which means that the energy efficiency is not always high in microwave heating. If the temperature increasing rate is carefully controlled, however, NaY zeolite can be produced with high energy efficiency in the microwave oven.

Effect of Ohmic Heating on Characteristics of Heating Denaturation of Soybean Protein (옴 가열이 대두 단백질의 열변성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.740-745
    • /
    • 2011
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when an electrical current is passed throught. In this study, we observed the physical & chemical characteristics changes which occurs in soybean protein during heating denaturation by using ohmic and conventional heating. After the ohmic heating process, we could not find any change of the primary protein structure in the denaturated soy protein samples. However, the rate of imbibed water(RIW) of the ohmic samples was 2 times faster than that of the conventional samples. Also the ANS-surface hydrophobicity was decreased, which is very closely related to RIW. In the differential scanning calorimeter(DSC) analysis result, all 7S soyprotein fraction samples were completely denaturated by ohmic and conventional heating. However, the 11S samples were completely denatured only by ohmic heating. According to the DSC result, we decided that soyprotein was damaged by temperature and electrical current during ohmic heating. The damage of electrical current was a cause of the characteristic changes.

Microwave Effect on Curing of Waterborne Polyurethane

  • Lee, Hoi-Kwan;Fang, Chris. Y.;Pantano, Carlo. G.;Kang, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.961-963
    • /
    • 2011
  • Spin-coated waterborne polyurethane to protect glass surface from environmental attacks was cured by using microwave heating. The effect of microwave heating on the reaction kinetics, chemical durability, and transmittance of polyurethane was investigated. In comparison to the conventional heating the results show that the microwave heating substantially accelerates the curing process of waterborne polyurethane and the total time for the completion of the reaction is only 1/7 of that in the conventional process. The microwave cured sample showed an excellent caustic resistance compared to conventional cured one. It means that microwave heating produces dense structure during curing process. The dense structure does not affect to the transmittance in the visible region.

Co-firing of Dielectric and Electrode with Conventional and Microwave Heating in Plasma Display Panel (전형적인 열처리와 마이크로웨이브 열처리에 따른 PDP용 전극과 투명 유전체의 동시 소성)

  • Hwang, Seong-Jin;Veronesi, Paolo;Leonelli, Cristina;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.463-463
    • /
    • 2008
  • The glass frit has been used in transparent dielectric, barrier rib and electrode of PDP (Plasma display panel). In PDP fabrication, the firing temperature of glass frit is normally 550~$580^{\circ}C$ with conventional heating. However, there are a problem that silver in electrode is diffused throughout the transparent dielectric. For inhibiting the Ag diffusion we considered use of the microwave heating. We investigated firing of glass frit compared between conventional and microwave heating. After firing by two types of heating, the diffusion of silver is determined using a optical microscope and UV-spectrometer. Based on the our results, the microwave heating should be a candidate to heating source for high efficacy in PDP.

  • PDF