• Title/Summary/Keyword: convective conditions

Search Result 214, Processing Time 0.026 seconds

A System Engineering Approach to Predict the Critical Heat Flux Using Artificial Neural Network (ANN)

  • Wazif, Muhammad;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.38-46
    • /
    • 2020
  • The accurate measurement of critical heat flux (CHF) in flow boiling is important for the safety requirement of the nuclear power plant to prevent sharp degradation of the convective heat transfer between the surface of the fuel rod cladding and the reactor coolant. In this paper, a System Engineering approach is used to develop a model that predicts the CHF using machine learning. The model is built using artificial neural network (ANN). The model is then trained, tested and validated using pre-existing database for different flow conditions. The Talos library is used to tune the model by optimizing the hyper parameters and selecting the best network architecture. Once developed, the ANN model can predict the CHF based solely on a set of input parameters (pressure, mass flux, quality and hydraulic diameter) without resorting to any physics-based model. It is intended to use the developed model to predict the DNBR under a large break loss of coolant accident (LBLOCA) in APR1400. The System Engineering approach proved very helpful in facilitating the planning and management of the current work both efficiently and effectively.

A study on the forced convection heat transfer in the vertical copper tube at uniform wall heat flux (균일한 열유속에서의 수직동관내의 강제대류 열전달에 관한 연구)

  • Baek, Go-Gil;Cha, Ji-Yeong;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.4
    • /
    • pp.213-220
    • /
    • 1979
  • A number of methods has been developed for calculation of heat transfer in the vertical round tube under conditions of forced convection with uniform heat flux at wall. I would like to express hereby one of applications of this study in the design of heat exchanger instruments for water flow at $15.8^{\circ}C(p_r=8)$ used frequently in our daily life. Also all the results are investigated for forced convective heat transfer in the case of heated water-flow at uniform wall heat flux in the vortical round copper tube, where the ratio of length to diameter will be 44. They are well in agreement with Gratz and Kraussold equation respectively in laminar and transition flow range. In turbulent flow in the range from Re=10,000 to 65,000, the experimental formula Is show as follows ; Nu=0.023 $R_e^{0.814}\;P_r^{0.4}$. And this is agreed with Dittus - Boelter equation when Reynolds number exponent increases from 0.80 to 0.814.

  • PDF

Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations (촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발)

  • Yun Seok Oh;Dae-Hoon Lee;Jin Hyun Nam
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

Prediction Method for Thermal Destruction of Internal Insulator in Solid Rocket Motor (고체추진기관 연소관단열재의 열파괴 예측기법)

  • Ji-Yeul Bae;In Sik Hwang;Yoongoo Kang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • This paper investigated the method to predict a thermal response of internal insulation in a solid rocket motor considering both thermal decomposition and ablation. Changes in properties due to the thermal decomposition, swelling of char layer and movement of decomposition gases inside the material were considered during a modeling. And radiative/convective heat flux from the exhaust gas were applied as boundary conditions, while the chemical ablation of the material surface is modeled with algebraic equations. Test SRM with thermocouples was solved for a validation purpose. The results showed that predicted temperatures have identical trends and values compared to the experimental values. And an error of predicted thermal destruction depth was around 0.1 mm.

Performance Analysis of Heat Sink for LED Downlight Using Lumped Parameter Model (집중변수모델을 이용한 LED조명등 방열기구의 성능분석)

  • Kim, Euikwang;Jo, Youngchul;Yi, Seungshin;An, Younghoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 2017
  • The performance analysis of the 70 W class LED lighting system suitable for the Middle East environment was performed using the lumped parameter model. The LED light is composed of a heating substrate, a heat pipe, and a heat sink. We divided the LED lights into four objects and applied energy equilibrium to each of them to establish four lumped nonlinear differential equations. The solution of the simultaneous equations was obtained by the Runge-Kutta method. Convective heat transfer coefficients of the lumped model were obtained by multidimensional CFD analysis. As a result of comparison with experiment, it was found that the heating substrate had an error of $1.5^{\circ}C$ and the upper heat sink had an error of $1.8^{\circ}C$ and the relative error was about 0.6 %. Using this model, temperature distribution analysis was performed for normal operating conditions with an ambient temperature of $55^{\circ}C$, with sunlight only, with abnormal operating conditions with sunlight, and without an upper heat sink.

A Study on the Predictability of the Air Pollution Dispersion Model Composed of the Turbulent Parameters (난류특성을 이용한 대기오염확산모델의 예측능에 관한 연구)

  • Park, Ki-Hark;Yoon, Soon-Chang
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2001
  • Gaussian dispersion model is the most widely used tool for the ground level air pollution simulation. Though in spite of the convenience there are important problems on the Pasquill- Gifford' stability classification scheme which was used to define the turbulent state of the atmosphere or to describe the dispersion capabilities of the atmosphere which was each covers a broad range of stability conditions, and that they were very site specific, and the vertical dispersion calculation formula on the case of the unstable atmospheric condition. This paper was carried out to revise the Gaussian dispension model for the purposed of increase the modeling performance and propose the revised model, which was composed of the turbulent characteristics in the unstable atmospheric conditions. The proposed models in this study were composed of the profile method, Monin-Obukhove length, the probability density function model and the lateral dispersion function which was composed of the turbulent parameters, $u_*$(friction velocity), $w_*$(convective velocity scale), $T_L$(lagrangian time scale) for the model specific. There were very good performance results compare with the tracer experiment result on the case of the short distance (<1415m) from the source, but increase the simulation error(%) to stand off the source in the all models. In conclusion, the revised Gaussian dispersion model using the turbulent characteristics may be a good contribution for the development of the air pollution simulation model.

  • PDF

Analysis of Radiative Heat Transfer and Thermal Stress in Flaring System of FPSO (FPSO 소각탑의 복사열전달 및 열응력 해석에 관한 연구)

  • Jang-Hyun Lee;Jong-Gye Shin;In-Sik Nho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.61-72
    • /
    • 2002
  • The flaring system of FPSO burns out the byproduct natural gas. The thermal loading due to radiative heat of flaring gas leads to undesirable thermal-stresses on itself. Nowadays it needs to understand the amount of thermal loading of flaring system since the requirement for the safety of the flaring system. However, few studies have been performed on the thermal environment and radiative heat flux on the FPSO flaring system. Present study suggests a procedure to model the thermal environment and a FEA process to analyze the temperature distribution and thermal stresses of FPSO flaring system. In order to get the temperature distribution, the radiative heat conditions and convective heat conditions are included in the heat transfer analysis. By making the use of temperature obtained through heat transfer analysis, the thermal stress analyses are performed. The results of the present study can be used to design the flaring system and determine the heat shield in the flaring system.

A Study on the Characteristics of Convective Activities related to Atmospheric Stability Index and Thunderstorms over the Naro Space Center (나로우주센터 상공의 대기 안정도지수 및 뇌운관련 대류활동 특성 연구)

  • Kim, Hong-Il;Choi, Eun-Ho;Seo, Seong-Gyu
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1133-1145
    • /
    • 2019
  • Successful launch requires state-of-the-art launch vehicle technology and constant test operations, However, the meteorological threat to the launch vehicle flight trajectory is also an important factor for launch success. Atmospheric stability above the Naro Space Center at the this time is very important, especially because the initial flight operation can determine the success of the launch. Moreover, during the flight of launch vehicle with rapid pressure and thrust into the atmosphere, convection activity in the atmosphere may create environmental conditions that cause severe weather threats such as thunderstorms. Hence, studies of atmospheric instability characteristics over the Naro Space Center are a necessary part of successful launch missions. Therefore, the main aims of this study were to (1) verify the atmospheric stability index and convection activity characteristics over the Naro Space Center using radiosonde data observed from 2007 to 2018 by the Naro Space Center, (2) analyze changes in the atmospheric stability index according to monthly and seasonal changes, and (3) assess how the calculated atmospheric stability index is related to actual thunderstorm occurrence using statistical analysis. Additionally, we aimed to investigate the atmospheric characteristics above the Naro Space Center through the distribution chart of the atmospheric stability index during summer, when convection activity is highest. Finally, we assessed the relationship between lightning occurrence and unstable atmospheric conditions, through predictability analysis performed using the lightning observation data of the Korea Meteorological Administration.

Relationship between Low-level Clouds and Large-scale Environmental Conditions around the Globe

  • Sungsu Park;Chanwoo Song;Daeok Youn
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.712-736
    • /
    • 2022
  • To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, sky-obscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.

Verification of the Planetary Boundary Layer Height Calculated from the Numerical Model Using a Vehicle-Mounted Lidar System (차량탑재 라이다 시스템을 활용한 수치모델 행성경계층고도 검증)

  • Park, Chang-Geun;Nam, Hyoung-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.793-806
    • /
    • 2020
  • In this study,for YSU (Yonsei University), MYJ(Mellor-Yamada-Janjic), ACM2 (Asymmetric Convective Model), and BouLac (Bougeault-Lacarrere) PBL schemes, numerical experiments were performed for the case period (June 26-30, 2014). The PBLH calculated by using the backscatter signal produced by the mobile vehicle-mounted lidar system (LIVE) and the PBLH calculated by the prediction of each PBL schemes of WRF were compared and analyzed. In general, the experiments using the non-local schemes showed a higher correlation than the local schemes for lidar observation. The standard deviation of the PBLH difference for daylight hours was small in the order of YSU (≈0.39 km), BouLac (≈0.45 km), ACM2 (≈0.47 km), MYJ (≈0.53 km) PBL schemes. In the RMSE comparison for the case period, the YSU PBL scheme was found to have the highest precision. The meteorological lider mounted on the vehicle is expected to provide guidance for the analysis of the planetary boundary layer in a numerical model under various weather conditions.