• Title/Summary/Keyword: convective conditions

Search Result 214, Processing Time 0.038 seconds

Experimental Studies on Thermal-Fluidic Characteristics of Carbon Dioxide During Heating Process in the Near-Critical Region for Single Channel (단일채널 내 임계영역 이산화탄소 가열과정의 열유동 특성에 관한 실험적 연구)

  • Choi, Hyunwoo;Shin, Jeong-Heon;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.408-418
    • /
    • 2017
  • Supercritical carbon dioxide ($sCO_2$) power system is emerging technology because of its high cycle efficiency and compactness. Meanwhile, PCHE (Printed Circuit Heat Exchanger) is gaining attention in $sCO_2$ power system technology because PCHE with high pressure-resistance and larger heat transfer surface per unit volume is fundamentally needed. Thermo-fluidic characteristics of $sCO_2$ in the micro channel of PCHE should be investigated. In this study, heat transfer characteristics of $sCO_2$ of various inlet conditions and cross-sectional shapes of single micro channel were investigated experimentally. Experiment was conducted at supercritical state of higher than critical temperature and pressure. Test sections were made of copper and hydraulic diameter was 1 mm. Convective heat transfer coefficients were measured according to each interval of the channel and pressure drop was also measured. Convective heat transfer coefficients from experimental data were compared with existing correlation. In this study, using measured data, a new empirical correlation to predict near critical region heat transfer coefficient is developed and suggested. Test results of single channel will be used for design of PCHE.

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

Analysis of solar radiation and simulation of thermal environment in plastic greenhouse -Simulation of thermal environment in plastic greenhouse- (플라스틱 온실(温室)의 일사량(日射量) 분석(分析)과 열적(熱的) 환경(環境)의 시뮬레이션에 관(關)한 연구(硏究) -플라스틱 온실(温室)의 열적환경(熱的環境)의 시뮬레이션-)

  • Park, J.B.;Koh, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.2
    • /
    • pp.16-27
    • /
    • 1987
  • Greenhouse farming was introduced to the Korean farmers in the middle of 1950's and its area has been increased annually. The plastic greenhouse, which is covered with polyethylene or polyvinyl chloride film, has been rapidly spread in greenhouse farming since 1970. The greenhouse farming greatly contributed to the increase of farm household income and the improvement of crop productivity per unit area. Since the greenhouse farming is generally practiced during winter, from November to March, the thermal environment in the plastic greenhouse should be controlled in order to maintain favorable condition for plant growing. Main factors that influence the thermal environment in the plastic greenhouse are solar radiation, convective and radiative heat transfer among the thermal component of the greenhouse, and the use of heat source. The objective of this study was to develop a simulation model for thermal environment of the plastic greenhouse in order to determine the characteristics of heat flow and effects of various ambient environmental conditions upon thermal environments within the plastic greenhouse. The results obtained are summarized as follows: 1. Simulation model for thermal environment of the plastic greenhouse was developed, resulting in a good agreement between the experimental and predicted data. 2. Solar radiation being absorbed in the plant and soil during the daytime was 75 percent of the total solar radiation and the remainder was absorbed in the plastic cover. 3. About 83 percent of the total heat loss was due to convective and radiative heat transfer through the plastic cover. Air ventilation heat loss was 5 to 6 percent of total heat loss during the daytime and 16 to 17 percent during the night. 4. The effectiveness of thermal curtain for the plastic greenhouse at night was significantly increased by the increase of the inside air temperature of the greenhouse due to the supplementary heat. 5. When the temperature difference between the inside and outside of the greenhouse was small, the variation of ambient wind velocity did not greatly affect on the inside air temperature. 6. The more solar radiation in the plastic greenhouse was, the higher the inside air temperature. Because of low heat storage capacity of the plant and soil inside the greenhouse and a relatively high convective heat loss through the plastic cover, the increase of solar radiation during the daytime could not reduce the supplymentary heat requirement for the greenhouse during the night.

  • PDF

Effects of stabilizing temperature gradients on thermal convection in rectangular enclosures during phsysical vapor trnasport (승화법에 의한 단결정성장공정에서 이중온도구배가 대류현상에 미치는 영향)

  • 김극태;최장우;이민옥;권무현;권순길
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.94-100
    • /
    • 1999
  • Mercurous chloride($Hg_2Cl_2$) crystals hold promise for many acousto-optic and opto-electronic applications, which are prepared in closed ampoules by the physical vapor transport(PVT) growth methods. The thermal boundary conditions established by imposing different temperature on sidewalls of the enclosure cause simultaneous horizontal and vertical convectie flow in the PVT processes of$Hg_2Cl_2$ . It is found that for the ratios of horizontal to vertical thermal Rayleigh numbers$Ra_H/Ra{\ge}1.5$, the convective flow structure changes from multicellular to unicellular for the base parametric state of Ra=($2.79{\times}10^4$) , Pr=0.91, Le=1.01, Pe=4.60, Ar=0.2 and$C_V =1.01$. For the $\Delta T^{*}_H$ greater than 0.3, the $$\mid$U$\mid$_{max}$is increased with increasing $\Delta$ T^{*}_H$ and decreasing the aspect ratio. For the aspect ratios ranging from 0.1 to 1.0, there is a direct and linear relationship between $$\mid$U$\mid$_{max}$ and $\sqrt{{\Delta}T^_H\;^{\ast}}$.A decrease in the aspect ratio destabilizes the convective flow and results in an increase of the magnitude of convection in the crystal growth reactor. The vertical gradient tends to destabilize the convective flow which leads to oscillations, whereas the horizontal gradient stabilizes the convection.

  • PDF

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

WRF Numerical Study on the Convergent Cloud Band and Its Neighbouring Convective Clouds (겨울철 동해상의 대상수렴운과 그 주위의 대류운에 관한 WRF 수치모의 연구)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.49-68
    • /
    • 2014
  • This study analyzed atmospheric conditions for the convergent cloud band (Cu-Cb line) in developing stage and its neighbouring convections formed over the East Sea on 1 February 2012, by using synoptic, satellites data, and WRF numerical simulation output of high resolution. In both satellite images and the WRF numerical simulation outputs, the Cu-Cb line that stretched out toward northwest-southeast was shown in the East Sea, and cloud lines of the L mode were aligned in accordance with the prevailing surface wind direction. However, those of the T mode were aligned in the direction of NE-SW, which was nearly perpendicular direction to the surface winds. The directions of the wind shear vectors connecting top winds and bottom winds of the moist layers of the L mode and the T mode were identical with those of the cloud lines of L mode and T mode, respectively. From the WRF simulation convection circulations with a convergence in the lower layer of atmosphere and a divergence above 1.5 km ASL (Above Sea Level) were identified in the Cu-Cb line. A series of small sized vortexes (maximum vortex: $320{\times}10^{-5}s^{-1}$) of meso-${\gamma}$-scale formed by convergences was found along the Cu-Cb lines, suggesting that Cu-Cb lines, consisting of numerous convective clouds, were closely associated with a series of the small vortexes. There was an absolute unstable layer (${\partial}{\theta}/{\partial}z$ < 0) between sfc and ~0.3 km ASL, and a stable layer (${\partial}{\theta}/{\partial}z$ > 0) above ~2 km ASL over the Cu-Cb line and cloud zones. Not only convectively unstable layers (${\partial}{\theta}_e/{\partial}z$ < 0) but also neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) in the lower atmosphere (sfc~1.5 km ASL) were scattered around over the cloud zones. Particularly, for the Cu-Cb line there were convectively unstable layers in the surface layer, and neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) between 0.2 and ~1.5 km ASL over near the center of the Cu-Cb line, and the neutralization of unstable layers came from the release of convective instability.

Leaching of Organophosphorus and Carbamate Pesticides in Soil Column and Prediction of Their Mobility Using the Convective Mobility Test Model in Soils (유기인계 및 카바메이트계 농약의 토주용탈과 대류이동성 모형에 의한 이동성 예측)

  • Kim, Chan-Sub;Ihm, Yang-Bin;Lee, Hee-Dong;Oh, Byung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.350-357
    • /
    • 2005
  • This study was conducted to investigate the downward mobility of pesticides using soil columns and to compare the experimental results with values predicted from Convective mobility test model. Nine pesticides such as metolcarb, molinate, fanobucarb, isazofos, diazinon, fenitrothion, dimepiperate, parathion and chlorpyrifos-methyl were used for leaching test in soil column for four soils; Jungdong (upland soil), Gangseo (paddy soil), Yesan (forest soil), and Sineom(upland, volcanic ash-derived soil) series. The peak concentrations leached from 10 cm-columns of three soils except Sineom series ranged 6.5 to 12.6 mg/L for metolcarb, 2.6 to 5.0 mg/L for molinate, 4.5 to 7.8 mg/L for fenobucarb, 0.39 to 1.36 mg/L for dimepiperate, 1.1 to 4.6 mg/L for isazofos, 0.01 to 0.14 mg/L for diazinon, lower than 0.01 to 0.70 mg/L for fenitrothion and lower than 0.01 to 0.44 mg/L for parathion. But chlorpyrifos-methyl was not leached from any soil columns. Elution volumes to reach the peak of metolcarb, molinate, fenobucarb, isazofos, diazinon, and dimepiperate in the leachate ranged 1.1 to 2.1 pore volume (PV), 1.6 to 3.3 PV, 1.6 to 3.3 PV, 2.1 to 4.4 PV, 6 to 15 PV, and 8 to 21 PV, respectively. On the same water flux conditions, convection times estimated by Convective mobility test model were coincided with results from soil column test in most of the soil-pesticide combinations applied. Based on convection times estimated by the model at standard conditions (water flux 1 cm/day), metolcarb was classified as most mobile, molinate, fenobucarb and isazofos as mobile or most mobile, dimepiperate as moderately mobile or mobile, diazinon as mobile, fenitrothion and parathion as slightly mobile or mobile and chlorpyrifos-methyl as immobile or slightly mobile.

Leaching and mobility prediction of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils (Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양 중 용탈과 이동성 예측)

  • Kim, Chan-Sub;Park, Kyung-Hun;Kim, Jin-Bae;Choi, Ju-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.300-308
    • /
    • 2002
  • This study was conducted to investigate the downward mobility of pesticides using soil colunms and to compare the experimental results with predicted values from Convective mobility test model. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to soil column leaching test for three types of cultivation soils. The concentrations of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor leached from soil column of 30 cm depth ranged $0.74{\sim}3.61mg/mL,\;0.36{\sim}1.67mg/L,\;0.16{\sim}0.84mg/L,\;0.16{\sim}0.67mg/L$ and lower than 0.15 mg/L, respectively. Elution volume to reach the peak of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor in the leachate ranged $2{\sim}4PV,\;3{\sim}10PV,\;5{\sim}13PV,\;4{\sim}14PV\;and\;19{\sim}61PV$, respectively. Convection times predicted by Convective mobility test model at standard conditions were $9{\sim}18$ days for ethoprophos, $17{\sim}35$ days for iprobenfos, $24{\sim}54$ days for isoprothiolane, $21{\sim}65$ days for procymidone and $105{\sim}279$ days for butachlor. Based on these convection times, ethoprophos was classified as mobile or most mobile, isoprothiolane and procymidone as moderately mobile or mobile and butachlor as slightly mobile. On the same conditions, convection times from the model were coincided with those from soil column test in most of the soil-pesticide combinations applied. Therefore, Convective mobility test model could be applied to predict convection times of pesticides.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Numerical Analysis of Nonlinear Combustion Instability Using Pressure-Sensitive Time Lag Hypothesis (시간지연 모델을 이용한 비선형 연소불안정 해석기법 연구)

  • Park Tae-Seon;Kim Seong-Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.671-681
    • /
    • 2006
  • This study focuses on the development of numerical procedure to analyze the nonlinear combustion instabilities in liquid rocket engine. Nonlinear behaviors of acoustic instabilities are characterized by the existence of limit cycle in linearly unstable engines and nonlinear or triggering instability in linearly stable engines. To discretize convective fluxes with high accuracy and robustness, approximated Riemann solver based on characteristics and Euler-characteristic boundary conditions are employed. The present procedure predicts well the transition processes from initial harmonic pressure disturbance to N-like steep-fronted shock wave in a resonant pipe. Longitudinal pressure oscillations within the SSME(Space Shuttle Main Engine) engine have been analyzed using the pressure-sensitive time lag model to account for unsteady combustion response. It is observed that the pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions.