• Title/Summary/Keyword: convective cell life-cycle

Search Result 4, Processing Time 0.018 seconds

Characteristics of Satellite Brightness Temperature and Rainfall Intensity over the Life Cycle of Convective Cells-Case Study (대류 세포의 발달 단계별 위성 휘도온도와 강우강도의 특성-사례연구)

  • Kim, Deok Rae;Kwon, Tae Yong
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.273-284
    • /
    • 2011
  • This study investigates the characteristics of satellite brightness temperature (TB) and rainfall intensity over the life cycle of convective cells. The convective cells in the three event cases are detected and tracked from the growth stage to the dissipation stage using the half-hourly infrared (IR) images. For each IR images the values of minimum, mean, and variance for the convective cell's TBs and the sizes of convective cells are calculated and also the relationship between TB and rainfall intensity are investigated, which is obtained using the pixel values of satellite TB and the ground rainfall intensity measured by AWS (Automatic Weather Station). At the growth stage of the convective cells, the TB's variance and cloud size consistently increased, whereas TB's minimum and mean consistently decreased. At this stage the empirical relationships between TB and rainfall intensity are statistically significant and their slopes (intercepts) in absolute values are relatively large (small) compared to those at the dissipation stage. At the dissipation stage of the convective cells, the variability of TB distributions shows the opposite trend. The statistical significance of the empirical relationships are relatively weak, but their slopes (intercepts) vary over life cycle. These results indicate that satellite IR images can provide valuable information in identifying the convective cell's maturity stage and in the growth stage, they may be used in providing considerably accurate rainfall estimates.

A Study of Convective Band with Heavy Rainfall Occurred in Honam Region

  • Moon, Tae-Su;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.601-613
    • /
    • 2015
  • On the study of the characteristics and life cycle of mesoscale convective band in type of airmass that occurred in the Honam area from June to September for only 4 years in the period of 2009~2012, 10 examples based on the amount of rainfall with AWS 24 hours/60 minutes rainfalls, Mt. Osung radar 1.5 km CAPPI/X-SECT images and KLAPS data for convective band with heavy rainfall event were selected. There were analyzed and classified by using the convective band with heavy rainfall occurred along the convergence line of sea wind in the form of individual multi-cellular cell and moving direction of convective band appeared in a variety of patterns; toward southwestern (2 cases), northeastern (4 cases), congesting (2 cases), and changing its moving direction (2 cases). The case study dated of the 17th Aug. 2012 was chosen and implemented by sequentially different evolution of its shape along the convergence line of sea wind cell and moving direction of convective band as equivalent potential temperatures at the lower layer have increased to the upper layer 500 hPa, that the individual cells were developed vertically and horizontally through their merger, but owing to divergence caused by weakened rainfall and descending air current, the growth of new cell was inhibited resulting in dissipation of convective cells.

Satellite Image Analysis of Convective Cell in the Chuseok Heavy Rain of 21 September 2010 (2010년 9월 21일 추석 호우와 관련된 대류 세포의 위성 영상 분석)

  • Kwon, Tae-Yong;Lee, Jeong-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.423-441
    • /
    • 2013
  • On 21 September 2010, one of Chuseok holidays in Korea, localized heavy rainfalls occurred over the midwestern region of the Korean peninsula. In this study MTSAT-2 infrared and water vapor channel imagery are examined to find out some features which are obvious in each stage of the life cycle of convective cell for this heavy rain event. Also the kinematic and thermodynamic features probably associated with them are investigated. The first clouds related with the Chuseok heavy rain are detected as low-level multicell cloud (brightness temperature: $-15{\sim}0^{\circ}C$) in the middle of the Yellow sea at 1630~1900 UTC on 20 Sept., which are probably associated with the convergence at 1000 hPa. Convective cells are initiated in the vicinity of Shantung peninsula at 1933 UTC 20, which have developed around the edge of the dark region in water vapor images. At two times of 0033 and 0433 UTC 21 the merging of two convective cells happens near midwestern coast of the peninsula and then they have developed rapidly. From 0430 to 1000 UTC 21, key features of convective cell include repeated formation of secondary cell, slow horizontal cloud motion, persistence of lower brightness temperature ($-75{\sim}-65^{\circ}C$), and relatively small cloud size (${\leq}-50^{\circ}C$) of about $30,000km^2$. Radar analysis showed that this heavy rain is featured by a narrow line-shaped rainband with locally heavy rainrate (${\geq}50$ mm/hr), which is located in the south-western edge of the convective cell. However there are no distinct features in the associated synoptic-scale dynamic forcing. After 1000 UTC 21 the convective cell grows up quickly in cloud size and then is dissipated. These satellite features may be employed for very short range forecast and nowcasting of mesoscale heavy rain system.

Thermodynamic Characteristics Associated with Localized Torrential Rainfall Events in the Middle West Region of Korean Peninsula (한반도 중서부 국지성 집중호우와 관련된 열역학적 특성)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Han, Sang-Ok
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.457-470
    • /
    • 2014
  • Thermodynamic conditions related with localized torrential rainfall in the middle west region of Korean peninsula are examined using radar rain rate and radiosonde observational data. Localized torrential rainfall events in this study are defined by three criteria base on 1) any one of Automated Synoptic Observing System (ASOS) hourly rainfall exceeds $30mmhr^{-1}$ around Osan, 2) the rain (> $1mmhr^{-1}$) area estimated from radar reflectivity is less than $20,000km^2$, and 3) the rain (> $10mmhr^{-1}$) cell is detected clearly and duration is short than 24 hr. As a result, 13 cases were selected during the summer season of 10 years (2004-13). It was found that the duration, the maximum rain area, and the maximum volumetric rain rate of convective cells (> $30mmhr^{-1}$) are less than 9hr, smaller than $1,000km^2$, and $15,000{\sim}60,000m^3s^{-1}$ in these cases. And a majority of cases shows the following thermodynamic characteristics: 1) Convective Available Potential Energy (CAPE) > $800Jkg^{-1}$, 2) Convective Inhibition (CIN) < $40Jkg^{-1}$, 3) Total Precipitable Water (TPW) ${\approx}$ 55 mm, and 4) Storm Relative Helicity (SRH) < $120m^2s^{-2}$. These cases mostly occurred in the afternoon. These thermodynamic conditions indicated that these cases were caused by strong atmospheric instability, lifting to overcome CIN, and sufficient moisture. The localized torrential rainfall occurred with deep moisture convection result from the instability caused by convective heating.