• Title/Summary/Keyword: convection tube

Search Result 169, Processing Time 0.031 seconds

Experimental investigation of heat transfer enhancement in horizontal bundle tubes on absorber (수평관군 흡수기의 전열촉진에 관한 실험적 연구)

  • Moon, Choon-Geun;Seol, Won-Sil;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.328-334
    • /
    • 2000
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different horizontal tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare tube, floral tube, hydrophilic tube. The additive concentration was about $0.05{\sim}5.5mass%$. The heat transfer coefficient was measured as a function of solution flow rate in the range of $0.01{\sim}0.034 kg/ms$. The experimental result were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube.

  • PDF

Experiments on R-22 condensation heat transfer in small diameter tubes (소구경 원관내의 R-22 응축열전달에 대한 실험)

  • 김내현;조진표;김정오;김만회;윤재호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.271-281
    • /
    • 1998
  • In this study, condensation heat transfer experiments were conducted with two small diameter(ø7.5, ø4.0) tubes. Comparison with existing in-tube condensation heat transfer correlations indicated that the correlations overpredict the present data. For example, Akers correlation overpredicts the data upto 104%. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300kg/$m^2$s, the difference was 12%. The pressure drop data of the small diameter tubes ware highly(two to six times) overpredicted by the Lockhart-Martinelli correlation. Subcooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

Heat Transfer Enhancement with Surfactants in Horizontal Bundle Tubes on Absorber (계면활성제를 이용한 수평관군 흡수기의 전열촉진)

  • Seol, Won-Sil;Kwon, Oh-Kyung;Moon, Choon-Geun;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1097-1103
    • /
    • 2000
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different horizontal tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare tube, floral tube and hydrophilic tube. The additive mass concentration was about 0.05${\sim}$5.5%. The heat transfer coefficient was measured as a function of solution flow rate for the range of 0.01${\sim}$0.034 kg/ms. The experimental results were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect generated by the addition of the surfactant is observed in each test tube. The increase of heat transfer coefficient by surfactant addition is about 35${\sim}$90% for bare tube, 40${\sim}$70% for the floral tube, 30${\sim}$50% for the hydrophilic tube and was higher for the cases with smaller a little solution flow rates.

Conjugate Heat Transfer for Circular Absorber in Parabolic Trough Concentrator (PTC형 집열기의 원관형 흡수기에서의 복합열전달)

  • Chung, J.M.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • In the present study, the characteristics of conductive and convective heat transfer occurred in a circular absorber of PTC (parabolic trough concentrator) for medium temperature solar energy utility were numerically investigated. A circular tube was considered as an absorber and the shape of PTC modeled in this study was based on the system that was installed in Korea Institute of Energy Research. Not only convection inside the tube but also conduction through the wall of the tube were analyzed, simultaneously. Circumferentially non-uniform heat flux that was simulated from the non-uniform solar disc model proposed by Jose was applied as thermal boundary condition on the tube surface. And, hydrodynamically fully developed laminar velocity profile was used as the inlet boundary condition and it was assumed that the working fluid was water. And, local heat fluxes at the interface of the tube and the working fluid were calculated for different wall thickness and thermal conductivity of the tube at various Reynolds number. Based on the results, the effects of thermal conduction of the tube on the local heat transfer were investigated.

  • PDF

A study of heat transfer with Phase Change Material in heat storage system - Inward freezing in the vertical cylinder - (상변화물질을 이용한 축열조에서 열전달현상에 관한 연구 - 수직원통관 내에서 응고 열전달 -)

  • Lee, C.M.;Yim, C.S.;Iqbal, M.
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.53-64
    • /
    • 1993
  • This study investigated heat transfer phenomena during the freezing of an initially superheated or non-superheated liquid in a cooled cylinder tube. Numerical and experimental method were performed to obtatin the temperature and velocity distribution, the shape of interface. Natural convection effects in the superheated liquid were confined and moderated a short freezing time. After natural convection ceases, heat conduction dominated in the whole paraffin, so Crystal and much-zone were found out in PCM. Initial superheating of liquid tended to morderatly diminish the frozen layer thickness at short freezing times but little effect on the these quantities at longer times. On the amount of frozen mass, Iintial liquid superheating is less affected than tube wall subcooling.

  • PDF

A Study on Cooling of Piezoelectric Element of Multifunction Equipment for Vacuum Exhaust and Ultrasonic Joining (진공 배기 및 초음파 접합 복합기 진동자 냉각에 관한 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1511-1517
    • /
    • 2012
  • Vacuum chamber or vacuum tube for the exhaust process of vacuum glazing is presently used, where excessive time and expenses are required to make the whole vacuum chamber or tube vacuum. To solve this problem, multifunction equipment for vacuum exhaust and ultrasonic joining at atmospheric pressure has been developed, in which a piezoelectric vibrator experiences excessive temperature rise resulting in optimizing the cooling of the equipment. Therefore, in this study, cooling effects of natural convection and forced convection methods were identified by numerical analysis and experiments, and cooling performance of the multifunction equipment was optimized.

Enhancement of Heat and Mass Transfer by Insert Spring in a Vertical Absorber with Surfactant

  • Yoon, Jung-In;Choi, Kwang-Hwan;Moon, Choon-Geun;Sarker M.M.A;Kwon, Oh-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1239-1250
    • /
    • 2004
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes are a bare inner surface. a groove inner surface, a corrugated inner surface and a spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of the film Reynolds number in the range of 20~200. Experiments were carried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with and without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.

An Experimental Study on Freezing of Phase Change Material in a Cooled Vertical Tube (수직냉각관내에서 상변화물질의 응고에 관한 실험적 연구)

  • Lee J. M.;Lee C. M.;Yhim J. S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.4
    • /
    • pp.223-229
    • /
    • 1984
  • Experiments were performed for freezing of an initially superheated or nonsuperheated liquid phase in a cooled vertical tube. The liquid was placed in a copper tube whose surface maintained a uniform temperature during the data run and the freezing occurred in a copper tube. The phase change medium was n-odtadecane, a paraffin which freezes at about $61^{\circ}C$. Measurements were made which yielded information about the time dependence of the freezing front, of the amount of frozen mass, and of the various energy components extracted from the tube. The time-wise decay of the initial liquid superheat was also measured. Initial superheat of the liquid tends to moderately diminish the rozen mass and associated latent energy extraction at small times but has lit tie effect on these quantities at large tiems. Natural convection in the liquid Plays a modest role only at small times and disappears when the superheat decay to zero. Although the latent energy constitutes the largest contributor to the total extracted energy, the sensible energy components can make a significant contribution, especially at large tube wall subcoolings, large initial liquid superheating and short freezing time.

  • PDF

Numerical Study of Mixed Convection Nanofluid in Horizontal Tube (수평원형관내 나노유체의 혼합대류에 관한 수치적 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.155-163
    • /
    • 2019
  • Laminar mixed convection of a nanofluid consists of water and $Al_2O_3$ in a horizontal circular tube has been studied numerically. Two-phase mixture model has been used to investigate hydrodynamic and thermal behaviors of the nanofluid with variables physical properties. Three dimensional Navier-Stokes, energy and volume fraction equations have been discretized using the finite volume method. The Brownian motions of nanoparticles have been considered to determine the thermal conductivity and dynamic viscosity of $Al_2O_3$-Water nanofluid, which depend on temperature. The calculated results show good agreement with the previous numerical data. Results show that in a given Reynolds number (Re), increasing solid nanoparticles volume fraction and Richardson number (Ri) increases the convective heat transfer coefficient and wall shear stress.