• Title/Summary/Keyword: convection tube

Search Result 169, Processing Time 0.027 seconds

Transient Multicomponent Mixture Analysis Based On an ICE Numerical Technique for the Simulation of an Air Inggess Accident in an HTGR

  • Lim, Hong-Sik;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.375-387
    • /
    • 2004
  • This paper presents a transient multicomponent mixture analysis tool developed to analyze the molecular diffusion, natural convection, and chemical reactions related to air ingress phenomena that occur during a primary-pipe rupture of a high temperature gas-cooled reactor (HIGR). The present analysis tool solves the one-dimensional basic equations for continuity, momentum, energy of the gas mixture, and the mass of each gas species. In order to obtain numerically stable and fast computations, the implicit continuous Eulerian scheme is adopted to solve the governing equations in a strongly coupled manner. Two types of benchmark calculations were performed with the data of prerious Japanese inverse U-tube experiments. The analysis program, based on the ICE technique, runs about 36 times faster than the FLUENT6 for the simulation of the two experiments. The calculation results are within a 10% deviation from the experimental data regarding the concentrations of the gas species and the onset times of natural convection.

Computation of Compact Heat Exchanger Performance by the Heat Exchangelet Method : Effect of Tube-to-tube Conduction along the Fin (미소열교환기법에 의한 밀집형 열교환기의 성능 계산 : 핀을 통한 튜브간 전도의 영향)

  • 성시경;송태호;최영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.494-501
    • /
    • 2000
  • Effectiveness of a 3-pass plate finned-tube heat exchanger is calculated using heat exchangelet method by changing the shape of fin and the arrangement of tubes. The alternative refrigerant R134a is taken in this study. Conduction between neighboring tubes along the fin is taken into account in addition to convection between the fin and the surrounding air. Governing equations are obtained by using energy balance in a small control volume containing a tube and fins. They are numerically solved following the tube. Effect of tube-to-tube conduction is investigated in single-phase and two-phase flows with various fin shapes and arrangements of tubes. Improvement of effectiveness by fin perforation is studied too. The results shows that perforating fins, increasing the number of tubes, and increasing the distance between neighboring tubes at the same fin area enhance the effectiveness.

  • PDF

Heat Transfer in Heat Storage System with P.C.M. -Experimental and Numerical Investigation during Inward Melting in a Vertical Tube- (상변화 물질을 사용한 축열조에서의 열전달 -수직원관내에서의 내향용융실험 및 수치해석-)

  • Yim, Chang-Soon;Choi, Guk-Gwang;Lee, Cha-Moon;Kim, Jun-Gun;Shong, Ha-Jin;Cho, Nam-Cheol
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.5-13
    • /
    • 1990
  • In the present investigation, experiments and numerical analysis during melting process of a phase change material were performed to research heat transfer phenomena generated by means of conduction and natural convection in the vertical tube at inward melting. The phase change material used in the experiments is 99 percent pure n-Docosane paraffin($C_{22}H_{46}$). In the results, it is found that the velocity of phase change interface at the top of tube is faster than at the bottom of tube because of the effect of natural convection, and the distribution of velocity at the liquid region is little affected by the initial temperature of phase change material. The velocity of phase change interface is slower as the initial temperature of phase change material is lower, and the effect of natural convection is larger as the aspect ratio of tube is larger. In tendency of heat transfer phenomena, the experimental results were well corresponded with numerical results. But there were a little disagrements between the results of experiment and numerical analysis because of the assumption of the constant volumetric expansion coefficient in numerical analysis.

  • PDF

A Study on the Heat Transfer Characteristics of the Radiant Chilled Ceiling Panel for Space Cooling (냉각된 복사천장패널의 열전달 특성에 관한 연구)

  • Lee, Tae-Won;Hwang, In-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.164-169
    • /
    • 2001
  • There is a chilled ceiling panel which carries out the air conditioning by radiation and convection between the room and cold ceiling panel surface. In order to verify heat transfer characteristics between them in cooling system with radiant chilled ceiling panel, analytical and experimental studies were performed for various design and operating parameters such as tube space and diameter, inlet water temperature, mass flow rate, cooling load, and so on. In this study, we found that the tube space and inlet water temperature were more important elements than the tube diameter and water flow rate for the performance of radiant chilled ceiling panel. The cooling capacity of the radiant chilled ceiling panel had the maximum value of $65W/m^{2}$ because the highest cooling capacity was limited by the condensation on the panel surface. The results of comparison between numerical analysis and experiment showed a resonable agreement qualitatively, especially for low cooling capacity.

  • PDF

Two-dimensional Heat Conduction and Convective Heat Transfer a Circular Tube in Cross Flow (원관 주위의 2차원 전도열전달과 국소 대류열전달)

  • Lee Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.25-33
    • /
    • 2005
  • When a circular tube with uniform heat generation within the wall was placed in a cross flow, heat flows by conduction in the circumferential direction due to the asymmetric nature of the fluid flow around the perimeter of the circular tube The circumferential heat flow affects the wall temperature distribution to such an extent that. in some cases, significantly different results may be obtained for geometrically similar surfaces. In the present investigation, the effect of circumferential wall heat conduction is investigated for forced convection around circular tube in cross flow of air and water Two-dimensional temperature distribution $T_w(r,{\theta})$ is calculated through the numerical analysis. The difference between one-dimensional and two-dimensional solutions is demonstrated on the graph of local heat transfer coefficients. It is observed that the effect of working fluid is very remarkable.

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

Experimental Investigation of R-22 Condensation in Tubes with Small Inner Diameter

  • Kim, Nae-Hyun;Cho, Jin-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.45-54
    • /
    • 1999
  • In this study, condensation heat transfer experiments were conducted in two small diameter (ø17.5, ø4.0) tubes. Comparison with the existing in-tube condensation heat transfer correlations indicated that these correlations over predict the present data. For example, Akers correlation over predicted the data up to 104 %. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300 kg/$m^2$s, the difference was 12 %. The pressure drop data of the small diameter tubes were highly (two to six times) over predicted by the Lockhart-Martinelli correlation. Sub-cooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

Effect of Liquid Subcooling on Pool Boiling Heat Transfer in Vertical Annuli with Closed Bottoms (액체과냉도가 하부폐쇄 수직환상공간 내부의 풀비등 열전달에 미치는 영향)

  • Kang Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.239-246
    • /
    • 2005
  • Effects of subcooling on pool boiling heat transfer in vertical annuli with closed bottoms have been investigated experimentally. For the test, a tube of 19.1mm diameter and the water at atmospheric pressure have been used. Three annular gaps of 7.05, 18.15, and 28.20 have been tested in the subcooled water and results of the annuli are compared with the data of a single unrestricted tube. The increase in pool subcooling results in much change in heat transfer coefficients. At highly subcooled regions, heat transfer coefficients for the annuli are much larger than those of a single tube. As the heat flux increases and subcooling decrease, a deterioration of heat transfer coefficients is observed at the annulus of 7.05mm gap. Single-phase natural convection and liquid agitation are the governing mechanisms for the single tube while liquid agitation and bubble coalescence are the major factors at the bottom closed annuli.

A Numerical Study on Gas Mixing Time in a Low-Pressure (Driven) Section of a Shock Tube (충격파관 저압실내 가스 혼합시간 예측에 관한 수치해석)

  • Wang, YuanGang;Cho, Cheon Hyeon;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.23-28
    • /
    • 2017
  • The fuel and oxidizer mixing process in the shock tube driven section is simulated numerically. The boundary condition is set based on an shock tube experimental condition. The objective is to predict the gas mixing time for experiments. In the experiment, the amount of fuel to be injected is determined in advance. Then, according to duration of fuel injection, 5 cases with the same fuel mass but different fuel mass flow rate are simulated. After fuel is injected into the driven section, the fuel and air will be mixed with each other through convection and diffusion processes. The mixing time is predicted numerically for experiments.

A Study of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller (질량흐름 제어기의 센서 튜브에서 열전달현상에 관한 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2003
  • In this paper, the heat transfer phenomena in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC, the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations of flow rate, generated heat by heating wire, sensor location and tube thickness were investigated to find the optimized condition. Based on this study, static and dynamic characteristics of sensor can be used for mass flow controller.

  • PDF