• Title/Summary/Keyword: controlling images

Search Result 198, Processing Time 0.021 seconds

A Study on the Moderating Factors of the Relationship between Artwork Color Series and Visitor Satisfaction in Commercial Spaces (상업공간에서 미술품 색 계열과 방문객 만족도 관계의 조절요인에 관한 연구)

  • Wang, YeunJu;Lee, SeungHyun;Bae, JiHye;Kim, SunYoung
    • Korean Association of Arts Management
    • /
    • no.58
    • /
    • pp.121-152
    • /
    • 2021
  • This study attempted to analyze the effect of the color series of artworks installed as environmental stimuli in commercial spaces on the satisfaction of visitors and the moderating effect of the relationship. To this end, based on the SOR model of Stimulate-Organism-Response applied to burial environment research in the field of environmental psychology, and the preceding research using the SOR model, artwork color series(S)-mood and spaace amenity(O)-A research framework for satisfaction(R) was developed. In the experiment, an online questionnaire was conducted for domestic college students and graduate students by producing images with two conditions depending on the case where warm colors and cold colors were installed for the color series of artworks. As a result of verifying the difference in satisfaction of respondents corresponding to the two conditions through regression analysis, it was found that the warm color(vs. cold color) of the artwork color series induces higher visitor satisfaction. In addition, as a result of verifying the controlling factors of mood and space amenity variables in this relationship of influence, a significant moderating effect was found when the positive mood of warm colors(vs. cold colors) in the artwork color series was felt higher than the average. And, of the four types of space amenity, it was found that a significant moderating effect appeared when only comfort and aesthetics were measured as moderating variables. The result of this study proves that the warm color series of artworks that stimulate the physical environment of commercial spaces has a more positive effect on the satisfaction of visitors than the cold color series, and this is reinforced by positive mood, comfort, and aesthetics. It adds understanding and provides useful implications for marketing strategies for building an effective spatial image.

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

Implementation and Evaluation of Optimal Dose Control for Portable Detectors with SiPM (SiPM을 통한 휴대용 검출기의 최적 선량 제어에 대한 구현 및 평가)

  • Byung-Wuk Kang;Sun-Kook Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1139-1147
    • /
    • 2023
  • The purpose of this paper is to present and evaluate the performance of a method for controlling the dose for optimal image acquisition while minimizing patient exposure by applying a small-sized Photomultiplier(SiPM) sensor inside a portable detector. Portable detectors have the advantage of being able to quickly access the patient's location for rapid diagnosis, but this mobility comes with the challenge of dose control. This paper presents a method to identify the dose that can have the DQE and optimal image quality of the detector through image evaluation based on IEC62220-1-1, an international standard for X-ray imaging devices, and to identify the optimal dose by matching the ADU of the image and the output of the SiPM Sensor. The Skull AP image was acquired by implementing the detector manufacturer's reference dose. The optimal dose was 342.8 µGy, and the optimal controlled dose was 148.3 µGy, which is 57 % of the manufacturer's reference dose. The Chest AP image was 81.9 µGy and the optimal controlled dose was 27.9 µGy, which is a high dose reduction effect of 66 %. In addition, the two images were analyzed by five radiologists and found to have no clinically significant difference in anatomical delineation.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

VR media aesthetics due to the evolution of visual media (시각 미디어의 진화에 따른 VR 매체 미학)

  • Lee, Dong-Eun;Son, Chang-Min
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.633-649
    • /
    • 2017
  • The purpose of this study is to conceptualize the changing aspects of human freedom of observation and viewing as the visual media evolves from film to 3D stereoscopic film and VR. The purpose of this study is to conceptualize the aspect of freedom and viewing aspect from the viewpoint of genealogy. In addition, I will identify the media aesthetic characteristics of VR and identify the identity and ontology of VR. Media has evolved around the most artificial sense of human being. There is a third visual space called screen at the center of all the reproduction devices centering on visual media such as painting, film, television, and computer. In particular, movies, television, and video screens, which are media that reproduce moving images, pursue perfect fantasy and visual satisfaction while controlling the movement of the audience. A mobilized virtual gaze was secured on the assumption of the floating nature of the so-called viewers. The audience sees a cinematic illusion with a view while seated in a fixed seat in a floating posture. They accept passive, passive, and passively without a doubt the fantasy world beyond the screen. But with the advent of digital paradigm, the evolution of visual media creates a big change in the tradition of reproduction media. 3D stereoscopic film predicted the extinction of the fourth wall, the fourth wall. The audience is no longer sitting in a fixed seat and only staring at the front. The Z-axis appearance of the 3D stereoscopic image reorganizes the space of the story. The viewer's gaze also extends from 'front' to 'top, bottom, left, right' and even 'front and back'. It also transforms the passive audience into an active, interactive, and experiential subject by placing viewers between images. Going one step further, the visual media, which entered the VR era, give freedom to the body of the captive audience. VR secures the possibility of movement of visitors and simultaneously coexists with virtual space and physical space. Therefore, the audience of the VR contents acquires an integrated identity on the premise of participation and movement. It is not a so-called representation but a perfection of the aesthetic system by reconstructing the space of fantasy while inheriting the simulation tradition of the screen.

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

The Photography as Technological Aesthetics (데크놀로지 미학으로서의 사진)

  • Jin, Dong-Sun
    • Journal of Science of Art and Design
    • /
    • v.11
    • /
    • pp.221-249
    • /
    • 2007
  • Today, photography is facing to the crisis of identity and dilemma of ontology from the digital imaging process in the new technology form. It is very important points to say rethinking of the traditional photographic medium, that has changed the way we view the world and ourselves is perhaps an understatement and that photography has transformed our essential understanding of reality. Now, no longer are photographic images regarded as the true automatic recording, innocent evidence and the mirror to the reality. Rather, photography constructs the world for our entertainment, helping to create the comforting illusions by which we live. The recognition that photographs are not constructions and reflections of reality, is the basis for the actual presence within the contemporary photographic world. It is shock. This thesis's aim is to look for the problems of photographic identity and ontological crisis that is controlling and regulating digital photographic imagery, allowing the reproduction of the electronic simulations era. Photography loses its special aesthetic status and becomes no more true information and, exclusively evidence by traditional film and paper that appeared both as a technological accuracy and as a medium-specific aesthetic. The result, photography is facing two crises, one is the photographic ontology(the introduction of computerized digital images) and the other is photographic epistemology(having to do broader changes in ethics, knowledge and culture). Taken together, these crises apparently threaten us with the death of photography, with the 'end' of photography and the culture it sustains. The thesis's meaning is to look into the dilemma of photography's ontology and epistemology, especially, automatical index and digital codes from its origin, meaning, and identity as the technological medium. Thus, in particular, thesis focuses on the analog imagery presence, from the nature in the material world, and the digital imagery presence from the cultural situations in our society. And also thesis's aim is to examine the main issues of the history of photography has been concentrated on the ontological arguments since the discovery of photography in 1839. Photography has never been only one static technology form. Rather, its nearly two centuries of technological development have been marked by numerous, competing of technological innovation and self revolution from the dual aspects. This thesis examines recent account of photography by the analysis of the medium's concept, meaning, identity between film base image and digital base image from the aspects of photographic ontology and epistemology. Thus, the structure of thesis is fairy straightforward to examine what appear to be two opposing view of photographic conditions and ontological situations. Thesis' view contrasts that figure out the value of photography according to its fundamental characteristic as a medium. Also, it seeks a possible solution to the dilemma of photographic ontology through the medium's origin from the early years of the nineteenth century to the raising questions about the different meaning(analog/digital) of photography, now. Finally, this thesis emphasizes and concludes that the photographic ontological crisis reflects to the paradoxical dynamic structure, that unsolved the origins of the medium, itself. Moreover, even photography is not single identity of the photographic ontology, and also can not be understood as having a static identity or singular status from the dynamic field of technologies, practices, and images.

  • PDF

Evaluation of HalcyonTM Fast kV CBCT effectiveness in radiation therapy in cervical cancer patients of childbearing age who performed ovarian transposition (난소전위술을 시행한 가임기 여성의 자궁경부암 방사선치료 시 난소선량 감소를 위한 HalcyonTM Fast kV CBCT의 유용성 평가 : Phantom study)

  • Lee Sung Jae;Shin Chung Hun;Choi So Young;Lee Dong Hyeong;Yoo Soon Mi;Song Heung Gwon;Yoon In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.73-82
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the effectiveness of reducing the absorbed dose to the ovaries and the quality of the CBCT image when using the HalcyonTM Fast kV CBCT of cervical cancer patients of child-bearing age who performed ovarian transposition Materials and Methods : Contouring of the cervix and ovaries required for measurement was performed on the computed tomography images of the human phantom (Alderson Rando Phantom, USA), and three Optically Stimulated Luminescence Dosimeter(OSLD) were attached to the selected organ cross-section, respectively. In order to measure the absorbed dose to the cervix and ovaries in the TruebeamTM pelvis mode (Hereinafter referred to as TP), The HalcyonTM Pelvis mode (Hereinafter referred to as HP) and The HalcyonTM Pelvis Fast mode (Hereinafter referred to as HPF), An image was taken with a scan range of 17.5 cm and also taken an image that reduced the Scan range to 12.5cm. A total of 10 cumulative doses were summed, It was replaced with a value of 23 Fx, the number of cervical cancer treatments, and compared In additon, uniformity, low contrast visibility, spatial resolution, and geometric distortion were compared and analyzed using Catphan 504 phantom to compare CBCT image quality between equipment. Each factor was repeatedly measured three times, and the average value was obtained by analysing with the Doselab (Mobius Medical Systems, LP. Versions: 6.8) program. Results: As a result of measuring absorbed dose by CBCT with OSLD, TP and HP did not obtain significant results under the same conditions. The mode showing the greatest reduction value was HPF versus TP. In HPF, the absorbed dose was reduced by 39.8% in the cervix and 19.8% in the ovary compared to the TP in the scan range of 17.5 cm. the scan range was reduced to 12.5 cm, absorbed dose was reduced by 34.2% in the cervix and 50.5% in the ovary. In addition, result of evaluating the quality of the image used in the above experiment, it complied with the equipment manufacturer's standards with Geometric Distortion within 1mm (SBRT standard), Uniformity HU, LCV within 2.0%, Spatial Resolution more than 3 lp/mm. Conclusion: According to the results of this experiment, HalcyonTM can select more various conditions than TruebeamTM in treatment of fertility woman who have undergone ovarian Transposition , because it is important to reduce the radiation dose by CBCT during radiation therapy. So finally we recommend HalcyonTM Fast kV CBCT which maintains image quality even at low mAs. However, it is consider that the additional exposure to low doses can be reduced by controlling the imaging range for patients who have undergone ovarian transposition in other treatment machines.