• Title/Summary/Keyword: controlling agent

Search Result 259, Processing Time 0.033 seconds

Antitumor Activity of the Novel Human Cytokine AIMP1 in an in vivo Tumor Model

  • Lee, Yeon-Sook;Han, Jung Min;Kang, Taehee;Park, Young In;Kim, Hwan Mook;Kim, Sunghoon
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.213-217
    • /
    • 2006
  • Although AIMP1 (previously known as p43) is one of three auxiliary proteins bound to a macromolecular aminoacyl tRNA complex, it is also secreted as a cytokine controlling both angiogenesis and immune responses. Here we show that systemically administered purified recombinant human AIMP1 had anti-tumor activity in mouse xenograft models. In Meth A-bearing Balb/c mice, tumor volume increased about 28 fold in the vehicle treatment group, while an increase of about 16.7 fold was observed in the AIMP1-treated group. We also evaluated the anti-tumor activity of AIMP1 in combination with a sub-clinical dose of the cytotoxic anti-tumor drug, paclitaxel. The growth of NUGC-3 human stomach cancer cells was suppressed by 84% and 94% by the combinations of 5 mg/kg paclitaxel + 25 mg/kg AIMP1 (p = 0.03), and 5 mg/kg paclitaxel + 50 mg/kg AIMP1 (p = 0.02), respectively, while 5 mg/kg paclitaxel alone suppressed growth by only 54% (p = 0.02). A similar cooperative effect of AIMP1 and paclitaxel was observed in a lung cancer xenograft model. These results suggest that AIMP1 may be useful as a novel anti-tumor agent.

The role and characterization of .betha.-1, 3-glucanase in biocontrol of fusarium solani by pseudomonas stutzeri YPL-1

  • Lim, Ho-Seong;KiM, Sang-Dal
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 1995
  • An antifungal Pseudomonas stutzeri YPL-1 produced extracellular chitinase and .betha.-1, 3-glucanase that were key enzymes in the decomposition of fungal hyphal walls. These lytic extracellular enzymes markedly inhibited mycelial growth of the phytopathogenic fungus Fusarium solani. A chitinase from P. stutzeri YPL-1 inhibited fungal mycelial growth by 87%, whereas a .betha.-1, 3-glucanase from the bacterium inhibited growth by 53%. Furthermore, co-operative action of the enzymes synergistically inhibited 95% of the fungal growth. The lytic enzymes caused absnormal swelling and retreating on the fungal hyphal walls in a dual cultures. Scanning electron microscopy clearly showed hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. In an in vivo pot test, P. stutzeri YPL-1 proved to have biocontrol ability as a powerful agent in controlling plant disease. Planting of kidney bean (Phaseolus vulgaris L.) seedlings with the bacterial suspension in F. solani-infested soil significantly suppressed the development of fusarial root-rot. The characteristics of a crude preparation of .betha.-1, 3-glucanase produced from P. stutzeri YPL-1 were investigated. The bacterium detected after 2 hr of incubation. The enzyme had optimum temperature and pH of 40.deg.C and pH 5.5, respectively. The enzyme was stable in the pH range of 4.5 to 7.0 and at temperatures below 40.deg.C, with a half-life of 40 min at 60.deg.C.

  • PDF

Natural antibrowning treatments on fresh-cut apple slices (천연 갈변방지제를 이용한 최소가공 사과 절편 개발)

  • Son, Seok-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.151-155
    • /
    • 2007
  • A comprehensive study to evaluate the relative antibrowning activity of 5 known natural juices was conducted. Among the juices tested, rhubarb juice showed the highest inhibitory activity on apple browning (${\Delta}L=0.47$ & ${\Delta}E=1.8$ after 6 storage days at $4^{\circ}C$). Even 50% diluted rhubarb juice was very effective in controlling apple discoloration, showing very limited change in Hunter's L and E values. No significant difference in apple slices browning was observed with respect to the packaging material (LDPE or nylon/PE). However, gas composition inside package was closely related to apple browning.

  • PDF

Preparation and Characterization of Poly(lactide-co-glycolide) Micro-spheres for the Sustained Release of AZT

  • Gilson Khang;Lee, Jin-Ho;Lee, Jin-Whan;Cho, Jin-Cheol;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • Biodegradable microspheres were prepared with poly(L-lactide-co-glycolide) (PLGA, 75 : 25 by mole ratio) by an oil/oil solvent evaporation method for the sustained release of anti-AIDS virus agent, AZT The microspheres of relatively narrow size distribution (7.6$\pm$ 3.8 ㎛) were obtained by controlling the fabrication conditions. The shape of microspheres prepared was smooth and spherical. The efficiency of AZT loading into the PLGA microsphere was over 93% compared to that below 15% for microspheres by a conventional water/oil/water method. The effects of Preparation conditions on the morphology and in vitro AZT release pattern were investigated. in vitro release studies showed that different release pattern and release rates could be achieved by simply modifying factors in the fabrication conditions such as the type and amount of surfactant, initial amount of loaded drug, the temperature of solvent evaporation, and so on. PLCA microspheres prepared by 5% of initial drug loading, 1.0% (w/w) of surfactant concentration, and 25$\^{C}$ of solvent evaporation temperature were free from initial burst effect and a near-zero order sustained release was observed. Possible mechanisms of the near-zero order sustained release for our system have been proposed.

  • PDF

Shape Control of Gold Nanocrystal: Synthesis of Faceted Gold Nanoparticles and Construction of Morphology Diagram

  • Ahn, Hyo-Yong;Lee, Hye-Eun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.1-281.1
    • /
    • 2013
  • Shape control of gold nanocrystal is still one of the most important challenges remaining to achieve geometry dependent properties. Thus far, several strategies have been developed to control the shape of nanoparticles, such as adding capping agents and diverse additives or adjusting the temperature and pH. Here, we used an already established seed-mediated method that allowed us to focus on controlling the growth stage. Cetyltrimethylammonium bromide (CTAB) and ascorbic acid (AA) were used as the ligand and the reducing agent, respectively, without using any additional additives during the growth stage. We investigated how the relative ratio of CTAB and AA concentrations could be a major determinant of nanoparticle shape over a wide concentration range of CTAB and AA. As a result, a morphology diagram was constructed experimentally that covered the growth conditions of rods, cuboctahedra, cubes, and rhombic dodecahedra. The trends in the morphology diagram emphasize the importance of the interplay between CTAB and AA. Furthermore, high-index faceted gold nanocrystal was obtained by two step seeded growth. Already synthesized cubic particles developed into hexoctahedral nanocrystal consisting of 48 identical {321} facets, which indicates that the growth of gold nanocrystal is affected by initial morphology of seed particles. The hexoctahedral gold nanoparticles can be used in catalysis and optical applications which exploiting their unique geometry. Our research can provide useful guidelines for designing various facetted geometries.

  • PDF

Inhibition of biofilm formation of periodontal pathogens by D-Arabinose

  • An, Sun-Jin;Namkung, Jong-Uk;Ha, Kyung-Won;Jun, Hye-Kyoung;Kim, Hyun Young;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.111-118
    • /
    • 2021
  • Periodontitis and periimplantitis are caused as a result of dental biofilm formation. This biofilm is composed of multiple species of pathogens. Therefore, controlling biofilm formation is critical for disease prevention. To inhibit biofilm formation, sugars can be used to interrupt lectin-involving interactions between bacteria or between bacteria and a host. In this study, we evaluated the effect of D-Arabinose on biofilm formation of putative periodontal pathogens as well as the quorum sensing activity and whole protein profiles of the pathogens. Crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy revealed that D-Arabinose inhibited biofilm formation of Porphyromonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia. D-Arabinose also significantly inhibited the activity of autoinducer 2 of F. nucleatum and the expression of representative bacterial virulence genes. Furthermore, D-Arabinose treatment altered the expression of some bacterial proteins. These results demonstrate that D-Arabinose can be used as an antibiofilm agent for the prevention of periodontal infections.

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Overcoming Encouragement of Dragon Fruit Plant (Hylocereus undatus) against Stem Brown Spot Disease Caused by Neoscytalidium dimidiatum Using Bacillus subtilis Combined with Sodium Bicarbonate

  • Ratanaprom, Sanan;Nakkanong, Korakot;Nualsri, Charassri;Jiwanit, Palakrit;Rongsawat, Thanyakorn;Woraathakorn, Natthakorn
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.205-214
    • /
    • 2021
  • The use of the supernatant from a Bacillus subtilis culture mixed with sodium bicarbonate was explored as a means of controlling stem brown spot disease in dragon fruit plants. In in vitro experiments, the B. subtilis supernatant used with sodium bicarbonate showed a strong inhibition effect on the growth of the fungus, Neoscytalidium dimidiatum, the agent causing stem brown spot disease and was notably effective in preventing fungal invasion of dragon fruit plant. This combination not only directly suppressed the growth of N. dimidiatum, but also indirectly affected the development of the disease by eliciting the dragon-fruit plant's defense response. Substantial levels of the pathogenesis-related proteins, chitinase and glucanase, and the phenylpropanoid biosynthetic pathway enzymes, peroxidase and phenyl alanine ammonia-lyase, were triggered. Significant lignin deposition was also detected in treated cladodes of injured dragon fruit plants in in vivo experiments. In summary, B. subtilis supernatant combined with sodium bicarbonate protected dragon fruit plant loss through stem brown spot disease during plant development in the field through pathogenic fungal inhibition and the induction of defense response mechanisms.

Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa

  • Sagar, Pankaj Kumar;Sharma, Poonam;Singh, Rambir
    • Journal of Pharmacopuncture
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • Objectives: The quorum-sensing-inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods: The preliminary anti-quorum-sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing-regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results: The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion: Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing-dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.

The Study about Relationship between Treatment of Ulcerative Colitis and Intestinal Bacteria According to Characteristic of Herbal Medicine (한약재 특성에 따른 궤양성 대장염 치료과 장내세균 상관관계 연구)

  • Yong-Deok Jeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.9-9
    • /
    • 2020
  • Many modern people are exposed to chronic inflammatory diseases, such as inflammatory bowel disease (IBD), atopic dermatitis and immune disorder. Among those chronic diseases, the incidence ratio of IBD has been increased. IBD, including Crohn's disease and ulcerative colitis (UC), is known to cause abnormal inflammation in intestinal tissue. UC is accompanied by abdominal pain, bloody stool and diarrhea. Many therapeutic agents, such as sulfasalazine, corticosteroids, immunosuppressive agents, have been used for treating UC. However, those agents have side-effects and temporary effects on UC. The aim of this study was to investigate the effect of herbal medicine on UC and relationship between UC and intestinal bacteria according characteristic of herbal medicine. To determine the effect of herbal medicine on UC, various herbal medicine were chosen within oriental medicine category such as cheongyeol and onyeol medicine. In this study, we found carthami fructus, included in cheongyeol medicine, had stronger effect than onyeol medicine. Also, we determined influence of carthami fructus against lactic acid bacteria. Catthami fructus and lingon berry extracts affected the composition of mice intestinal bacteria in mice fecal. The symptoms of UC could be regulate by using herbal medicine, according to characteristic of herbal medicine. Also, herbal medicine might be change body condition to healthy by controlling intestinal bacteria composition. Herbal medicine characteristic could be a therapeutic agent by revealing relationship between intestinal bacteria and UC.

  • PDF