• Title/Summary/Keyword: controller design problem

Search Result 910, Processing Time 0.027 seconds

Current Control of a Three-Phase PWM converter Based on a New control Model with a Time Delay and SVPWM Effects (시지연과 SVPWM 영향이 고려된 새로운 제어 모델에 의한 3상 전압원 PWM 컨버터의 전류 제어)

  • 민동기;안성찬;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.115-122
    • /
    • 2000
  • In design of a digital current controller for a 3cP PWM converter, its conventional model is used in obtaining i its discretized version. But, it has errors since the characteristics of SVPWM and time delay are not taken i into consideration. In this paper, the new reference frame model of a 3c~ PWJVI converter is proposed C considering these problems. Also, the direct digital current controller based on this model is designed without a any extra algolithm. A simple tuning algorithm for the proposed current controller is given to compensate the i inductaηce mismatch problem. Then simulation and experimental results show the validity of the algolithm.

  • PDF

Improved Deadbeat Current Controller with a Repetitive-Control-Based Observer for PWM Rectifiers

  • Gao, Jilei;Zheng, Trillion Q.;Lin, Fei
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.64-73
    • /
    • 2011
  • The stability of PWM rectifiers with a deadbeat current controller is seriously influenced by computation time delays and low-pass filters inserted into the current-sampling circuit. Predictive current control is often adopted to solve this problem. However, grid current predictive precision is affected by many factors such as grid voltage estimated errors, plant model mismatches, dead time and so on. In addition, the predictive current error aggravates the grid current distortion. To improve the grid current predictive precision, an improved deadbeat current controller with a repetitive-control-based observer to predict the grid current is proposed in this paper. The design principle of the proposed observer is given and its stability is discussed. The predictive performance of the observer is also analyzed in the frequency domain. It is shown that the grid predictive error can be decreased with the proposed method in the related bode diagrams. Experimental results show that the proposed method can minimize the current predictive error, improve the current loop robustness and reduce the grid current THD of PWM rectifiers.

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

The Navigation Control for Intelligent Robot Using Genetic Algorithms (유전알고리즘을 이용한 지능형 로봇의 주행 제어)

  • Joo, Young-Hoon;Cho, Sang-Kyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.451-456
    • /
    • 2005
  • In this paper, we propose the navigation control method for intelligent robot using messy genetic algorithm. The fuzzy controller design for navigation of the intelligent robot was dependant on expert's knowledge. But, the parameters of the fuzzy logic controller obtained from expert's control action may not be outimal. In this paper, to solve the above problem, we propose the identification method to automatically tune the number of fuzzy rule and parameters of memberships of fuzzy controller using mGA. Finally, to show and evaluate the generality and feasibility of the proposed method, we provides some simulations for wall following navigation of intelligent robot.

Design of SPMSM Robust Speed Servo Controller Switching PD and Sliding Mode Control Strategies (PD-슬라이딩 모드 제어의 절환을 통한 강인한 SPMSM 속도 제어기 설계)

  • Son, Ju-Beom;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • The paper proposes a new type of robust speed control strategy for permanent magnet synchronous motor by using PD-sliding mode hybrid control. The PD control has a good performance in the transient region while the sliding mode controller provides the robustness against system uncertainties. Taking advantages of the two control strategies, the proposed control method utilizes the PD control in the approaching region to the sliding surface and the sliding mode control near at the sliding surfaces. The chattering problem of the sliding mode controller is eliminated by applying the saturation function for the switching function of the sliding mode control. The stability of the sliding mode control is verified by using Lyapunov function with the proper selection of variable gains. It is shown that with this simple switching algorithm, stability of the overall hybrid control system is ensured. Through the simulations, the PD-sliding mode algorithm is shown to have a good performance in the transient response as well as being robust against disturbances. The robustness of the PD-sliding mode algorithm is further demonstrated against various external disturbances in the real experiments of SPMSM motor control.

Fuzzy Controller for Intelligent Networked Control System with Neutral Type of Time-delay (뉴트럴 타입 시간 지연을 갖는 지능형 네트워크 제어 시스템의 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.174-179
    • /
    • 2009
  • We consider the stabilization problem for a class of networked control systems with neutral type of time delays. The neutral type of time-delays occur in controller-to-actuator and sensor-to-controller. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear system with neutral type of time-delays. The stabilization via state-feedback is first addressed, and delay-range-dependent stabilization conditions are proposed in terms of linear matrix inequalities (LMIs). Finally, an application example will be given to show the merits and design a procedure of the proposed approach.

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.

Sliding Mode Control for Improving Performance of Mount with MR(Magneto-Rheological) Fluid (MR마운트 진동제어 성능 향상을 위한 슬라이딩 모드 제어)

  • Ahn, Young Kong;Kim, Sung-Ha;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.18-25
    • /
    • 2017
  • This paper deals with vibration control of a small mount with MR(Magneto-Rheological) fluid as a functional fluid mount for precision equipment of automobiles. Damping and stiffness coefficients of the mount with MR fluid are changed by variations of the applied magnetic field strength. We present the robust control scheme, based on a conventional sliding mode control theory, for the design of a stable controller that is capable of vibration control due to various disturbances such as impact and periodic excitations, and is insensitive to dynamic properties of the mount. We got stable controller by using Lyapunov stability theory. The controller is then realized by using a semi-active control condition in simulations. Chattering problem of the sliding mode control is eliminated by saturation function instead of signum function. The sliding mode control with Lyapunov stability theory is superior to passive and Sky-Hook control in performance.

PSO-SAPARB Algorithm applied to a VTOL Aircraft Longitudinal Dynamics Controller Design and a Study on the KASS (수직이착륙기 종축 제어기 설계에 적용된 입자군집 최적화 알고리즘과 KASS 시스템에 대한 고찰)

  • Lee, ByungSeok;Choi, Jong Yeoun;Heo, Moon-Beom;Nam, Gi-Wook;Lee, Joon Hwa
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.12-19
    • /
    • 2016
  • In the case of hard problems to find solutions or complx combination problems, there are various optimization algorithms that are used to solve the problem. Among these optimization algorithms, the representative of the optimization algorithm created by imitating the behavior patterns of the organism is the PSO (Particle Swarm Optimization) algorithm. Since the PSO algorithm is easily implemented, and has superior performance, the PSO algorithm has been used in many fields, and has been applied. In particular, PSO-SAPARB (PSO with Swarm Arrangement, Parameter Adjustment and Reflective Boundary) algorithm is an advanced PSO algorithm created to complement the shortcomings of PSO algorithm. In this paper, this PSO-SAPARB algorithm was applied to the longitudinal controller design of a VTOL (Vertical Take-Off and Landing) aircraft that has the advantages of fixed-wing aircraft and rotorcraft among drones which has attracted attention in the field of UAVs. Also, through the introduction and performance of the Korean SBAS (Satellite Based Augmentation System) named KASS (Korea Augmentation Satellite System) which is being developed currently, this paper deals with the availability of algorithm such as the PSO-SAPARB.

Output Feedback Robust $H^infty$ Control for Uncertain Fuzzy Dynamic Systems (불확실성을 갖는 퍼지 시스템의 출력궤환 견실 $H^infty$ 제어)

  • Lee, Kap-Lai;Kim, Jong-Hae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.15-24
    • /
    • 2000
  • This paper presents an output feedback robust H$\infty$ control problem for a class of uncertain nonlinear systems, which can be represented by an fuzzy dynamic model. The nonlinear system is represented by Takagi-Sugeno fuzzy model, and the control design is carried out on the basis of the fuzzy model. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H$\infty$ controllers are given in terms of linear matrix inequalities(LMIs). Constructive algorithm for design of robust H$\infty$ controller is also developed. The resulting controller is nonlinear and automatically tuned based on fuzzy operation.

  • PDF