• Title/Summary/Keyword: controller design problem

Search Result 910, Processing Time 0.032 seconds

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.

Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach (Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법)

  • Chu, Jun-Uk;Lee, Yun-Jung;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

Modeling of Hybrid Generation System with Wind Turbine, Diesel Generator and Flywheel Energy Storage System (풍력-디젤-플라이휘일 하이브리드 발전시스템 모델링에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2979-2984
    • /
    • 2013
  • This paper proposes a modeling and controller design method of Flywheel Energy Storage System(FESS) for solving the unstable operation problem in hybrid generation system with wind turbine and diesel generator applied in island area. FESS is considered as a permanent magnetic synchronous machine connected to flywheel because of its efficiency. The controller of FESS is composed of AC/DC/AC back-to-back converter. The AC/DC converter is designed to charge/discharge according to the frequency variation and the DC/AC converter to operate to keep the DC bus voltage constant. The proposed modeling and controller design method of FESS was applied to hybrid generation system with wind turbine and diesel generator. The unstable operation problem owing to wind variations was solved through simulation results.

퍼지 논리를 이용한 슬라이딩 모드 제어기의 인자 자동 튜닝

  • Ryu, Se-Hee;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.973-979
    • /
    • 2001
  • Sliding mode control guarantees robustness in the presence of modeling uncertainties and external disturbances. However, this can be obtained at the cost of high control activity that may lead to chattering As one way to alleviate this problem a boundary layer around sliding surface is typically used. In this case the selection of controller gain, control ban width and boundary layer thickness is a crucial problem for the trade-off between tracking error and chattering. The parameter tuning is usually done by trail-and-error in practice causing significant effort and time. An auto tuning method based on fuzzy rules is proposed in the paper in this method tracking error and chattering are monitored by performance indices and the controller tunes the design parameters intelligently in order to compromise both indices. To demonstrate the efficiency of the propose method a mass-spring translation system and a roboic control system are simulated and tested It is shown that the proposed algorithm is effective to facilitae the parameter tuning for sliding mode controllers.

  • PDF

Application of CDM to MIMO Systems: Control of Hot Rolling Mill

  • Kim, Young-Chol;Hur, Myung-Jun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.250-256
    • /
    • 2001
  • This paper deals with a design problem of a decentralized controller with a strongly connected two-input two-output multivariable system. To this end, we present a classical design approach which consists of two main steps: one is to decompose the multivariable plant into two single-input single-output systems by means of the Individual Channel Design (ICD) concept, the other is to design controller of each channel by the Coefficient Diagram Method (CDM) so that it satisfies, especially, time domain specifications such as settling time, overshoot etc.. A design procedure was proposed and then was applied to a 2$\times$2 hot rolling mill plant. Simulation results showed that the proposed method has excellent control performances.

  • PDF

The Control of a flexible Robotic Finger Driven by PZT (압전소자로 구동되는 유연성 로봇 핑거의 제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Design of the flexible switching controller for small PWR core power control with the multi-model

  • Zeng, Wenjie;Jiang, Qingfeng;Du, Shangmian;Hui, Tianyu;Liu, Yinuo;Li, Sha
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.851-859
    • /
    • 2021
  • Small PWR can be used for power generation and heating. Considering that small PWR has the characteristics of flexible operating conditions and complex operating environment, the controller designed based on single power level is difficult to achieve the ideal control of small PWR in the whole range of core power range. To solve this problem, a flexible switching controller based on fuzzy controller and LQG/LTR controller is designed. Firstly, a core fuzzy multi-model suitable for full power range is established. Then, T-S fuzzy rules are designed to realize the flexible switching between fuzzy controller and LQG/LTR controller. Finally, based on the core power feedback principle, the core flexible switching control system of small PWR is established and simulated. The results show that the flexible switching controller can effectively control the core power of small PWR and the control effect has the advantages of both fuzzy controller and LQG/LTR controller.

Analysis and control of the falling cat phenomenon

  • Nakagawa, Takayuki;Sampei, Mitsuji;Kiyota, Hiromitsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.472-475
    • /
    • 1995
  • In this paper, we investigate so-called the falling cat problem. It is well known that a cat, when released from an upside down configuration starting from rest, is able to land on her feet without violating angular momentum conservation. This has being an interesting problem for engineers for a long time. We consider a model of a falling cat as connected two rigid columns, which is a nonholonomic system. We design the controller for it, using time- state control form of the model and exact linearization technique. Finally, we test the controller thorough simulation on the model of a falling cat.

  • PDF

Mixed H$_2$H$\infty$and $\mu$-synthesis Approach to Coupled Three-Inertia Benchmark Problem (혼합 H$_2$H$\infty$$\mu$-이론을 이용한 벤치마크 문제의 해법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.22-22
    • /
    • 2000
  • This study investigates the use of mixed $H_2/H_{\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertia system which reflects the dynamics of mechanical vibrations. We, first adopt the mixed $H_2/H_{\infty}$ the to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty.

  • PDF

A Study on Obstacle Avoidance Technology of Autonomous Treveling Robot Based on Ultrasonic Sensor (초음파센서 기반 자율주행 로봇의 장애물 회피에 관한 연구)

  • Hwang, Won-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • This paper presents the theoretical development of a complete navigation problem of a nonholonomic mobile robot by using ultrasonic sensors. To solve this problem, a new method to computer a fuzzy perception of the environment is presented, dealing with the uncertainties and imprecision from the sensory system and taking into account nonholonomic constranits of the robot. Fuzzy perception, fuzzy controller are applied, both in the design of each reactive behavior and solving the problem of behavior combination, to implement a fuzzy behavior-based control architecture. The performance of the proposed obstacle avoidance robot controller in order to determine the exact dynamic system modeling system that uncertainty is difficult for nomadic controlled robot direction angle by ultrasonic sensors throughout controlled performance tests. In additionally, this study is an in different ways than the self-driving simulator in the development of ultrasonci sensors and unmanned remote control techniques used by the self-driving robot controlled driving through an unmanned remote controlled unmanned realize the performance of factory antomation.