• Title/Summary/Keyword: controlled synthesis

Search Result 629, Processing Time 0.024 seconds

pH-Controlled Synthesis of Cephalexin by a Purified Acetobacter turbidans Ampicillin Acylase

  • Nam, Doo-Hyun;Ryu, Yeon-Woo;Dewey D.Y Ryu
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.329-332
    • /
    • 2001
  • It has been known that, in enzymatic synthesis of cephalexin, the conversion yield was reduced by high loading of ampicillin acylase. In order to elucidate this phenomena, pH-controlled synthesis of cephalexin was examined using a purified Acetobacter turbidans acylase. When the pH of the reaction mixture was maintained at $6.20{\pm}0.04$, the reduction of the maximal conversion rate was not observed even with high enzyme loading. The kinetic parameters also suggest that pH drop during the enzymatic synthesis of cephalexin was mainly attributed to the rapid hydrolysis of D-${\alpha}$-phenylglycine methyl ester to D-${\alpha}$-phenylglycine, rather than the disappearance of 7-amino-3-deacetoxycephalosporanic acid for cephalexin synthesis. At higher molar ratio of two substrates, [D-${\alpha}$-phenylglycine methyl ester]/[7-amino-3-deacetoxycephalosporanic acid], the conversion rate was also elevated under pH-controlled enzymatic synthesis, which implies that the main reason for the pH drop is due to the production of D-${\alpha}$-phenylglycine methyl easter, the effect of a water-methanol cosolvent system on the ester, the effect of a water-methanol cosolvent system on the conversion profile was also examined. Even the though the conversion rate was increased in 10% methanol solution, a higher than 16% methanol in the reaction mixture caused an inactivation of enzyme.

  • PDF

Functional Polymers with Controlled Molecular Architecture: Design, Synthesis and Applications

  • Frechet Jean M.J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.1-2
    • /
    • 2006
  • Polymer architecture plays a great role in determining the properties of functional polymers. This lecture will explore the design and the synthesis of polymers with controlled architecture and functionality. Especially featured will be star and dendritic architectures where the functional group placement and the molecular shape can be controlled. This will be followed by examples of applications illustrated with a few model systems of functional polymers designed for use in areas such as organic electronics, catalysis, surface patterning, separation and molecular recognition, and polymer therapeutics.

  • PDF

A New Functional Synthesis Method for Macro Quantum Circuits Realized in Affine-Controlled NCV-Gates (의사-제어된 NCV 게이트로 실현된 매크로 양자회로의 새로운 함수 합성법)

  • Park, Dong-Young;Jeong, Yeon-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.447-454
    • /
    • 2014
  • Recently most of functional synthesis methods for quantum circuit realization have a tendency to adopt the declarative functional expression more suitable for computer algorithms, so it's difficult to analysis synthesized quantum functions. This paper presents a new functional representation of quantum circuits compatible with simple architecture and intuitive thinking. The proposal of this paper is a new functional synthesis development by using the control functions as the power of corresponding to affine-controlled quantum gates based on the mathematical substitution of serial-product matrix operation over the target line for the arithmetic and modulo-2 ones between power functions of unitary operators. The functional synthesis algorithm proposed in this paper is useful for the functional expressions and synthesis using both of reversible and irreversible affine-controlled NCV-quantum gates.

Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge (지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Choi, Kang-Min;Lee, Jong-Heon;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Seismic Response Control of a Cable-Stayed Bridge using a $\mu$-Synthesis Method ($\mu$-합성법을 이용한 사장교의 지진응답 제어)

  • 박규식;정형조;윤우현;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.476-483
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a μ-synthesis method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a f-synthesis method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The control performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by LQG algorithm and an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the control performance of the proposed control system is superior to that of the passive system and slightly better than that of the active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a μ-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Solution-Phase Synthesis of Shape-Controlled Metal Nanocrystals

  • Im, Byeong-Gwon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.21.1-21.1
    • /
    • 2011
  • Controlling the morphology of a metal nanocrystal is critical to modern materials chemistry because its physical and chemical properties can be easily and widely tuned by tailoring the size and shape. Combined with ease of synthesis and processing, metal nanocrystals with desired morphologies and thus properties are promising candidates for a wide variety of applications in catalysis, sensing, imaging, electronics, and photonics, and medicine. In this talk, I would like to introduce my recent research results on the shape-controlled synthesis of metal nanocrystals using a simple aqueous method. This water-based system provides a number of merits such as simplicity, convenience, and the potential for large-scale production and enables us to synthesize metal nanocrystals with a rich variety of shapes such as truncated octahedron, cubes, bars, octahedrons, and thin plates. The ability to control the shape of metal nanocrystals provides a great opportunity to systematically investigate their catalytic and optical properties.

  • PDF

Solid-state Synthesis of $Mg_2X$ (X=Si, Ge, Sn and Pb) via Bulk Mechanical Alloying

  • Aizawa, Tatsuhiko;Song, Renbo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.831-832
    • /
    • 2006
  • Solid-state processing via the bulk mechanical alloying enables us to directly fabricate $Mg_2X$ semi-conductive material performs. Precise control of chemical composition leads to investigation on the dilution and enrichment of X in $Mg_2X$. Two types of solid-state reactivity are introduced: e.g. synthesis of $Mg_2Si$ from elemental mixture Mg-Si is nucleation-controlled process while synthesis of $Mg_2Sn$ from Mg-Sn, diffusion-controlled process. Thermoelectricity of these $Mg_2X$ is evaluated for discussion on the validity and effectiveness of this new PM route as a reliable tool for fabrication of thermoelectric compounds.

  • PDF

Active-RC Circuit Synthesis for the Simulation of Current-Controlled Simulated Inductors (전류-제어 인덕터의 시뮬레이션을 위한 능동 -RC 회로 합성)

  • Won Sup Chung;Ji Mann Park
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.6
    • /
    • pp.8-13
    • /
    • 1993
  • A systematic synthesis process is presented for the simulation of current-controlled grounded inductors. The process is used to obtain three circuits which are believed to be novel. One of the circuits has been implemented using linear operational transconductance amplifiers (OTA's). Computer simulation rusults are used to verify theoretical predictions. The results show close agreement between predicted behaviour and experimental performance.

  • PDF

A study on the regulatory control structure synthesis in chemical processes (화학공정의 제어구조 합성에 관한 연구)

  • 심문호;윤인섭;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.205-208
    • /
    • 1986
  • The synthesis of control structure involves the selection of controlled variable (or measured variable), and the structure interconnecting measured and manipulated variables (control loops). This paper deals with the synthesis job by using the structural analysis and block relative gain. This synthesis tool is very useful because they require minimal information, and the results show that this is a systematic and efficient metholodgy.

  • PDF