• Title/Summary/Keyword: controlled atmosphere

Search Result 286, Processing Time 0.036 seconds

Ethyl Silicate Bonded Alumina as a Ceramic Binder

  • N, Korobova;Dea-Wha, Soh
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.103-107
    • /
    • 2002
  • Ethyl silicate was used as organic binder for alumina refractories. In the present work only 15% of the water required for complete hydrolysis of ethyl silicate was initially added. The balance was provided from the atmosphere under controlled conditions of temperature and rh. The purpose of detailing the possible binder problem areas is more to indicate that the binder can have an effect on ceramic operations.

  • PDF

Coarsening of Dispersoid and Matrix Phase in Mechanically Alloyed ODS NiAl (기계적 합금화된 ODS NiAl에서 분산상 및 기지상의 조대화 거동)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • NiAl powders containing oxide dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been consolidated by hot extrusion and hot pressing followed by isothermal annealing to induce microstructure coarsening to improve high temperature properties. Grain growth and dispersoid coarsening kinetics have been investigated as functions of annealing time and temperature. Coarsening of dispersion strengthen NiAl and dispersoid has been discussed. Some clues of secondary recrystallization have been investigated. Mechanical property measurements have been also made and correlated with the microstructures.

  • PDF

Measurements of Total peroxide and HCHO in the atmosphere using glass coil-HPLC method (유리코일-HPLC법을 이용한 대기 중 Total peroxide, HCHO 측정)

  • 김규수;홍상범;이재훈;김민영;여인학
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.321-322
    • /
    • 2002
  • 오존(O$_3$)은 강한 산화제로써 광화학 스모그의 주요 원인이 되며, 산화력이 강해 눈을 자극하고, 호흡기 장애를 일으키는 등 인간 건강에 영향을 미치며 식물 및 재산에도 심각한 피해를 주는 것으로 보고되고 있다. 오존농도는 대기 중에서 NOx(NO+NO$_2$)와 VOCs의 농도 비에 의해 영향을 받는데, 이 비가 작을 경우 오존생성은 NOx 농도에 의해 좌우(controlled)되고 클 경우는 VOCs의 농도에 좌우된다. (중략)

  • PDF

Innovative Approach to Sintering Aluminum and Aluminum Alloy Powders for Rapid Manufacturing Applications

  • Liu, Jianxin;Kuhn, Howard A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.246-247
    • /
    • 2006
  • A new approach to sintering loose packed, coarse aluminum alloy powder to full or near full density is presented. A controlled amount of water vapor is introduced into the sintering atmosphere, which disru pts the oxide film and allows metallurgical contact between particles. In addition, supersolidus liquid phase sintering is used to sinter the part to full density. Since the method is particularly applicable to uncompacted powders, it is potentially useful for sintering aluminum powder preforms manufactured by 3DPrinting and powder injection molding.

  • PDF

Influence of changing Combustor Pressure on Flame Stabilization and Emission Charncteristics (연소실 압력변동이 화염안정화와 배출특성에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2354-2359
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated. The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}$=Pabs/Patm), where Pabs and Patm indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of 0.7${\sim}$1.3 for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. NOx emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion, hence CO emission index increased. These oscillating flames were measured by simultaneous $CH^{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

Influence of changing combustor pressure and secondary fuel injection on flame stabilization and emission characteristic in swirl flame (연소실 압력변동과 2차 연료 분사가 스월 화염에서 화염안정화와 배출 특성에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.133-138
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. $NO_x$ emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion , hence CO emission index increased. These oscillating flames were measured by simultaneous $CH{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

A Study on the Improvery Efficiency of Heavy Water Vapour for CANDU Reactor Systems (CANDU형 원자력 발전소의 중수 증기 회수율 증대 방안에 관한 연구)

  • 김윤제;박이동;황영규;이도영
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.101-112
    • /
    • 1995
  • In order to improve the recovery efficiency of heavy water vapour from the atmosphere inside a reactor building, and to recover and upgrade the heavy water which escape, special treatments, such as reducing the ingress of light water vapour, are studied in the design of the CANDU reactor systems. This is considered in controlled method of the humidity over drawing fresh air through a desiccant dehumidifier which dries the air by absorption. Comparing with the moisture loads between summer and winter operations, the moisture removal rates are calculated. Those are proportional to the difference between the controlled space and the surrounding environment Installation of a new dehumidifier will be able to reduce the moisture loads from the cooling systems, improving overall system efficiency and saving operating costs.

  • PDF

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

Influence of changing combustor pressure and secondary fuel injection on flame stabilization and NOx emission (연소실 압력변동과 2차 연료분사가 화염안정화와 NOx 배출에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.128-133
    • /
    • 2006
  • Influence of changing combustor pressure on flame stabilization and nitrogen oxide (NOx) emission in the swirl-stabilized flame with secondary fuel injection was investigated. The combustor pressure was controlled by suction at combustor exit. Pressure index ($P{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed different tendency compared with laminar flames. Emission index showed maximum value near atmospheric condition and decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s of pressure fluctuations also showed similar tendency with nitric oxide emission. By injecting secondary fuel into flame zone, the flammable limits were extended significantly. Emission index of nitric oxide and r.m.s. of pressure fluctuations were also controlled by injecting secondary fuel. The swirl flames were somewhat lifted by secondary fuel with high momentum, hence low nitric oxide emission. This NOx reduction technology is applicable to industrial furnaces and air conditioning system by adopting secondary fuel injection.

  • PDF

Influence of the Water Vapor Content on the Hydrogen Reduction Process of Nanocrystalline NiO

  • Jung, Sung-Soo;An, Hyo-Sang;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.315-319
    • /
    • 2010
  • In this study, the hydrogen reduction behavior of ball-milled NiO nanopowder was investigated depending on the partial pressure of water vapor. The hydrogen reduction behavior was analyzed by thermogravimetry and hygrometry under heating to 873 K in hydrogen. In order to change the partial pressure of the water vapor, the dew point of hydrogen was controlled in the range of 248 K~293 K by passing high-purity hydrogen through a saturator that contained water. Interestingly, with the increase in the dew point of the hydrogen atmosphere, the first step of the hydrogen reduction process decreased and the second step gradually increased. After the first step, a pore volume analysis revealed that the pore size distribution in the condition with a higher water vapor pressure shifted to a larger size, whereas the opposite appearedat a lower pressure. Thus, it was found that the decrease in the pore volume during the chemical reaction controlled process at a dew point of 248 K caused a reduction in retardation in the diffusion controlled process.