• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.039 seconds

Knock Control Using Cylinder Block Vibration Signals in a Spark-Ignition Engine (스파크 점화 기관의 실린더 블록 진동 신호를 이용한 노킹 제어)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.186-194
    • /
    • 1997
  • The objective of this study is to develope knock control algorithms which can increase engine power without causing frequent knock occurrence. A four cylinder spark-ignition engine is used for the experiments to develop knock control algorithms which use block vibration signals. Knock occurrence is detected accurately by using knock threshold values which consider the difference of transmission path of each cylinder. Spark timing is controlled both simultaneously and individually. With the simultaneous control, torque gain is achieved by retarding the spark timing on knock occurrence in propotion to the knock intensity. The individual knock control algorithm results in higher torque gain than the simultaneous knock control algorithm. The knock occurrence frequency of the individual knock control algorithm is about twice the value of the simultaneous knock control algorithm results. Both control algorithms give similar torque gain of about 3% when they are optimized.

  • PDF

Structural Vibration Control Using Semiactive Tuned Mass Damper (건물의 내진성능을 향상시키기 위한 반능동 동조질량감쇠 시스템)

  • Moon, Yeong-Jong;Ji, Han-Rok;Jung, Hyung-Jo;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.645-650
    • /
    • 2006
  • This paper presents the results of a study to verify the sufficient control performance of semiactive tuned mass damper and to identify suitable control methods for semiactive tuned mass damper in structural vibration control. In this study, four control algorithms are considered: on-off displacement based groundhook, on-off velocity based groundhook, clipped optimal and maximum energy dissipation algorithm. For semiactive tuned mass damper, MR damper is considered as a controllable damping device and the command voltage is calculated by the control algorithms. Each of the control theory is applied to the three story shear building excited by three earthquakes. The performance of each algorithm is compared with that of conventional tuned mass damper system using evaluation criteria. The simulation results indicate that semiactive tuned mass damper has control efficiency. Among the control algorithms, on-off displacement based control theory shows the best efficacy and robustness.

  • PDF

A Study on Tunnel Excavation by Controlled Blast Vibration at Particular Environment Conditions (발파진동 제어에 의한 특수구간 터널굴착에 관한 연구)

  • Choi, Hyung-Bin;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.257-267
    • /
    • 2000
  • It was difficult to apply conventional excavation methods in some sections from Seoul to Pusan high speed rail road construction of 1 lot 2, due to highway concrete road, gas pipe, water pipe and nearby factories with automatic control system machine. To excavate safely and efficiently in these sections new blast patterns were employed within allowable blast vibration level, by test blast and controlled vibration by sequential blast. Behaviors of the rock mass including convergence and displacement around tunnel were measured with construction works and the crack width in concrete wall was also monitored for controlling allowable limits. The results can be summarized as follow : 1. The allowable blast vibration level in structure site is less 1.0cm/sec for highway concrete, 0.5 cm/sec for gas pipe, water pipe and building housing and 0.3 cm/sec for automatic control system machine. 2. The convergence displacement, single rod extensometer and multi rod extensometer around tunnel and cracks in concrete wall were measured, it was confirmed that the measured values were converged within allowable level. 3. The empirical formular of ground vibrations with 90% confidence lines for PD-3 was given as follow. $$V_{90%}=45.549({\frac{D}{\sqrt{W}}})^{-1.353}$$

  • PDF

A Numerical Study on the Effective Dimension in Slot-drilling Method (슬롯드릴링공법의 유효제원에 관한 수치해석적 연구)

  • Yoon, Ji-Sun;Lee, Jee-Hoon;Son, Sung-Hoon
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.50-58
    • /
    • 2010
  • This study explores the slot-drilling method that has not yet enough been studied in Korea and intends to provide a theoretical framework for putting the method into practice in a construction site. The possible reduction of ground vibration by implementing slot-drilling methods is addressed. Two main subjects dealt with include the variation of vibration velocity that is based on the distance between the slot-drilling and the epicenter of blasting and the analysis of appropriate effective dimension of slot-drilling width and height to control blasting vibration. This study shows that effect of vibration reduction decreases when distance of the slot-drilling and the epicenter of blasting is getting larger and also reveals that there is a correlation between the slot size and the vibration velocity at any point.

Effects of Guideway's Vibration Characteristics on Dynamics of a Maglev Vehicle (가이드웨이 진동 특성이 자기부상열차 동특성에 미치는 영향)

  • Han, Hyung-Suk;Yim, Bong-Hyuk;Lee, Nam-Jin;Hur, Young-Chul;Kwon, Jung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • The electromagnet in Maglev vehicles controls the voltage in its winding to maintain the air gap, a clearance between the electromagnet and guideway, within an allowable deviation, with strongly interacting with the flexible guideway. Thus, the vibration characteristics of guideway plays important role in dynamics of Maglev vehicles using electromagnet as an active suspension system. The effects of the guideway's vibrational characteristics on dynamics of the Maglev vehicle UTM-01 are analyzed. The coupled equations of motion of the vehicle/guideway with 3 DOFs are derived. Eigenvalues are calculated and frequency response analysis is also performed for a clear understanding of the dynamic characteristics due to guideway vibration characteristics. To verify the results, tests of the urban Mgalev vehicle UTM-02 are carried out. It is recommended that the natural frequency of the guideway be minimized and its damping ratio in the Maglev vehicle with a 5-states feedback control law as a levitation control law.

Effects of Whole Body Vibration Exercise on the Muscle Strength, Balance and Falling Efficacy of Super-aged Elderly: Randomized Controlled Trial Study

  • Seo, Jin-Hyuk;Lee, Myung-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2020
  • PURPOSE: This study examined the effects of a whole body vibration-exercise program on the muscle strength, balance, and falling efficacy of super-aged women. METHODS: Thirty participants, who are over 75 years of age, were recruited. They were assigned randomly to an experimental group (n=15), which received whole body vibration exercise, and a control group (n=15), which received an exercise program that did not include vibration. The interventions lasted for four weeks, three times a day, and 25 minutes per session. To compare the effects of the intervention, a 30-second chair stand test (CST), Korean version of Berg balance scale (K-BBS), functional reach test (FRT), timed up and go test (TUG), and Korean version of the falls efficacy scale (K-FES) was used. RESULTS: The experimental group showed a significant increase (p.<05) before and after the intervention in the chair stand test (CST), Korean version of the Berg balance scale (K-BBS), functional reach test (FRT), timed up-and-go (TUG), and Korean version of the fall efficacy scale (K-FES). Compared to the control group, the experiment group showed a more significant increase (p.<05) in the CST, K-BBS, and FRT. CONCLUSION: A whole body vibration exercise program could be suggested as an effective intervention method for muscle and balance strengthening for super-aged women.

Micro-Vibration Measurement, Analysis and Attenuation Techniques of Reaction Wheel Assembly in Satellite (인공위성 반작용휠의 미소진동 측정, 해석 및 저감 기술)

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.126-132
    • /
    • 2002
  • Jitter induced from several payloads on-board satellites degrade the performance of pointing accuracy and attenuate the resolving power of highly-precise camera image such as KOMPSAT II. In this paper, we introduce a micro-vibration measurement technique, analysis of dynamic characteristics, and modeling method for a reaction wheel assembly which is one of the major sources of jitter in satellites and an effective vibration reduction techniques are considered. Based on these techniques, vibration measurement and passive control were performed with an micro-vibration generator which was designed to have similar dynamic performances with an actual reaction wheel assembly above 50Hz.

Zero Placement of the Asymmetric S-curve Profile to Minimize the Residual Vibration (잔류진동 저감을 위한 비대칭 S-curve 프로파일의 영점 배치법)

  • Ha, Chang-Wan;Rew, Keun-Ho;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.308-313
    • /
    • 2012
  • Robust tuning rules of the motion profile are proposed to minimize the residual vibration. For asymmetric S-curve profile, tuning rules are analytically formulated using Laplace-domain approach. When the system modeling is known exactly, by placing a single zero of the motion profile on the pole of the system, the residual vibration can be perfectly eliminated under undamped system. However, if there are some amounts of the modeling errors, the residual vibration significantly increases. To track this issue, the robust tuning rules against modeling error are discussed. One of the proposed robust tuning rules is placing the multiple zeros of the motion profile on the pole of the system, and the other is placing the zeros of the motion profile around the pole of the system. Thanks to the proposed robust tuning rules, motion profile becomes more robust to modeling errors while minimizing the residual vibration. By simulation, the effectiveness of the proposed robust tuning rules is verified.

The effect of dynamic property of absorbing sheet on the amplification of heavy weight floor impact noise (완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구)

  • Hwang, J.S.;Moon, D.H.;Park, H.G.;Hong, S.G.;Hong, Geon-Ho;Lim, J.H.;Kim, Y.N.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.527-528
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6-7dB compared to the conventional slab system at the optimal stud location.

  • PDF

Optimization of Excitation Forces Produced by the Diesel Engine for Vibration Control in Ships (선박에서 진동제어를 위한 디젤엔진 기진력의 최적화)

  • 박정근;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1018-1025
    • /
    • 2003
  • The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method, the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60% of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.

  • PDF