• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.032 seconds

CONVERTER DESIGN AND CONTROL OF PIEZOELECTRIC ACTUATORS IN SLIDING MODE OPERATION

  • Palis F.;Heller D.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.785-789
    • /
    • 2001
  • Piezoelectric actuators are characterized by non-linear dynamics and high frequency oscillations of the piezocrystal. Both properties have to be taken into consideration when optimizing real time systems. Taking benefit of the almost linear behaviour between charge and strain, current source fed piezoelectric actuators are given preference for high dynamic applications. Here special emphasis is put on current sources for multi-actuator systems and the controller design for optimal system integration of the actuator. It is shown that sliding mode operation of the converter system offers good possibilities to guaranty high accuracy and dynamics of the actuators system. The presented multi-actuator system is used for positioning and vibration damping in flexible mechanical systems.

  • PDF

A Study on the Remote Detection of a Hydraulic Cylinder Stroke Using Optical Fiber Sensors (광파이버센서를 이용한 유압실린더 스트로크의 원격 검출에 관한 연구)

  • 김인환;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.191-198
    • /
    • 2001
  • In order to comprise a basic closed-loop control system for hydraulic systems it is necessary to detect the piston rod stroke of a hydraulic cylinder. There are many conventional type sensors which can detect the displacement of cylinders. However, they cannot reveal the original performance normally or they cannot be applied at all where the operating circumstance of cylinders is beyond specifications of sensors. Especially, for the purpose of detecting the strokes of cylinders mounted on heavy equipments, a special exclusive sensor must be used because the operating circumstances of heavy equipments are so severe that general purpose sensors cannot endure such circumstance as shock and a residual vibration induced by rough works. In this paper, an exclusive method for detecting the piston rod stroke for heavy equipments is suggested, which adopts a remote detecting technique using optical fiber sensors. Several experiments using the prototype are executed for verifying the effectiveness of the suggested method and the possibility of the accurate detection of stroke.

  • PDF

Propeller Skew Optimization Considering Varying Wake Field (선체반류를 고려한 프로펠러 최적 스큐화)

  • 문일성;김건도;유용완;류민철;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.26-35
    • /
    • 2003
  • Propellers operating in a given nonuniform ship wake generate unsteady loads leading to undesirable stern vibration problems. The skew is known to be the most proper and effective geometric parameter to control or reduce the fluctuating forces on the shaft. This paper assumes the skew profile as either a quadratic or a cubic function of the radius and determines the coefficients of the polynomial function by applying the simplex method. The method uses the converted unconstrained algorithm to solve the constrained minimization problem of 6-component shaft excitation forces. The propeller excitation was computed either by applying the two-dimensional gust theory for quick estimation or by the fully three-dimensional unsteady lifting surface theory in time domain for an accurate solution. A sample result demonstrates that the shaft forces can be further reduced through optimization from the original design.

Dynamic Modeling and Model Reduction for a Large Marine Engine

  • Kim, Chae-Sil;Jung, Jong-Ha;Park, Hyung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.520-525
    • /
    • 2003
  • This article provides a dynamic modeling methodology of engines to be accurate with a small number of degrees of freedom for an active vibration control using a top bracing. First. a finite element (FE) model for the engine structure is constructed so that the size of model is as small as possible where the dynamic characteristics of engine are ensured. Second. a technique is studied to obtain the exact mass and stiffness matrices of the FE model. The size of matrices from the FE model is still too large to apply. Finally, a model reduction is. therefore. conducted to make an appropriate dynamic model for designing and simulating a top bracing. In this article, a dynamic model of a large 9 cylinder engine is constructed and reviewed by comparing its natural frequencies and steady state reponses with those of experimental data provided by manufacturer.

An Experimental Study of Heat Transfer Analysis in Molding the Rubber Bearing for Seismic Isolator (고무 면진 베어링 몰딩과정의 열전달 해석 및 실험)

  • Kang, Gyung-Ju;Moon, Byung-Young;Kang, Beom-Soo;Kim, Kye-Soo;Jung, Kung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.275-280
    • /
    • 2001
  • Seismic isolator system is one of the most widely used base isolation system in order to control the vibration of structure against earthquake excitation. The evaluation of vulcanization time in molding the rubber bearing is very important for both proper ability of isolator and efficiency of manufacture. This paper deals with experimental measurement of temperature of isolator with senor inside in it, and compared with the result of FEA in order to evaluate the vulcanization time. Properties of rubber bearing which is used in the FEA are obtained by controlling the specific heat of rubber. With the obtained properties of rubber, the isolator is analysed by FEA. As a result, an appropriate analytical vulcanization time is obtained. This time is regarded as an appropriate temperature, which is used to effective manufacture.

  • PDF

A Study on Characteristics of Surface Roughness by Cutting Condition Variation in Face Milling (정면밀링가공시 절삭조건 변화에 표면거칠기 특성에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.248-253
    • /
    • 1997
  • The ideal surface roughness is obtained by tool geometry and feed rate in face milling. however actual surface roughness is affected by various factors such as cutting conditions. vibration and used tool. To improve the quality and productivity of the machining parts, lots of research on the evaluation of tool life and control of surface roughness has been required. Therefore, the width of flank wear, cutting force, and surface roughness are monitored to analyse the characteristics of surface roughness. This experimental investigation is mainly focused on the characteristics of surface roughness in multi-insert milling using TiN coated tool.

  • PDF

Performance Characteristics of Seat Damper Using MR Fluid (MR 유체를 이용한 운전석 댐퍼의 성능특성)

  • 남무호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.127-134
    • /
    • 2000
  • This paper presents the development of a semi-active seat damper using MR fluids and the performance analysis of seat suspension system with a MR seat damper. An annular orifice type MR seat damper is proposed for a seat suspension of a commercial vehicle. After formulating the governing equation of motion, then an appropriate size of the seat damper is designed and manufactured. Following the evaluation of field-dependant damping force characteristics, the controllability of the damping force is experimentally demonstrated in time domain by adopting PID controller. A semi-active seat suspension with the proposed MR damper is constructed and its dynamic model is established. Subsequently, vibration control capability of the semi-active suspension system is investigated by employing the sky-hook controller.

  • PDF

On the Rock Fragmentation with Plasma Blasting (플라즈마 장비의 발파공법)

  • 이경운
    • Explosives and Blasting
    • /
    • v.17 no.2
    • /
    • pp.19-35
    • /
    • 1999
  • Rock fragmentation with plasma blasting technique has advantageous properties in contrast to the conventional blasting method controlling of flying rocks and ground vibrations, when residents are complaining or surrounding structures stay in protection from blasting operations. The experiences show in urban construction works that the plasma blasting is the most possible method to prevent damages and minimize adverse environmental impacts. The fragmentation energy level is evaluated by numerical simulation using PFC for various drill hole patterns and tested accordingly to get the feasibility. The energy output of plasma blasting system has been improved to a level of 1 MJ, which can break a 2-3 ㎥ granite boulder or 1.5m height bench face. Measurements are carried out to get the ground vibration level and propagation equation, so that control of the blasting operations can be performed more precisely and safely.

  • PDF

Machining Accuracy for Large Optical Mirror using On-Machine Spherical Surface ]Referenced Shack-Hartmann System (On-Machine 구면기준 Shack-Hartmann 장치를 이용한 대형 반사경의 가공 정밀도 연구)

  • Hong Jong Hui;Oh Chang Jin;Lee Eung Suk;Kim Ock Hyn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.726-733
    • /
    • 2005
  • A spherical surface referenced Shack-Hartmann method is studied for inspecting machining accuracy of large concave mirror This method is so strong to the vibration environment for using as an on-machine inspection system during polishing process of large optics comparing with the interferometry. The measuring uncertainty of the system is shown as less than p-v 150 m. On-machine measured surface profile data with this method is used for feed back control of the polishing time or depth to improve the surface profile accuracy of large concave mirror. Also, the spherical surface referenced Shack-Hartmann method is useful for measuring aspheric such as parabolic or hyperbolic surface profile, comparing that the interferomehy needs a special null lens, which is to be a reference and difficult to fabricate.

Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines (커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.