• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.029 seconds

Indoor Environment of Inside Ancient Tomb with HVAC System (공조기를 적용한 고분내부 실내환경)

  • Lee, Kum-Bae;Jun, Hee-Ho;Ko, Seok-Bo;Park, Jin-Yang;Jun, Yong-Du
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.141-147
    • /
    • 2005
  • Although the importance of good conservation of historic sites including ancient royal tombs is wet] aware, still not much attention has been paid for the facilities and systems to preserve those historic sites, which includes precious artifacts as wall paints and carved works, etc. Even the general understanding about the environment of the underground space of tombs is not satisfactory. In the present study, vibration levels due to the operation of an HVAC system to maintain the desired indoor temperature and humidity are investigated experimentally. According to the measured data, the level of vibration inside the present model tomb with the indoor unit inside, showed order of magnitude less values than the Swiss Standards, but still higher than the value suggested by German standards, which is, zero. For the vibration level depends not only on the system design, but also on the installation methods, further study will be pursued for cases including different ways of installation.

  • PDF

Application of Full-Face Round by Sequential Blasting Machine in Tunnel Excavation (터널굴착에서 다단식 발파기에 의한 전단면 발파의 적용성 연구)

  • 조영동;이상은;임한욱
    • Explosives and Blasting
    • /
    • v.13 no.1
    • /
    • pp.20-31
    • /
    • 1995
  • Many methods and techniques to reduce ground vibrations are well known. Some of them are to adopt electric milisecond detonators with a sequential blasting machine or an initiating system with an adequate number of delay intervals. The types of electric detonators munufactured in Korea include instantaneous, decisecond and milisecond delays byt numbers of delay intervals are only limite from No.1 to No.20 respectively. It is not sufficient to control accurately milisecond time with these detonators in tunnel excavation. Sequential fire time refers to adding an external time delay to a detonators norminal firing time to obtain sequential initiation and it is determined by sequential timer setting. To reduce the vibration level, sequential blasting machine with decisecond detonatore was adopted. A total of 134 blasting was recorded at various sites. Blast-to-structure distances ranged from 20.3 to 42.0 meter, where charge weight varied from 0.25 to 0.75 kg per delay. The results can be summarized as follow : 1. The effects of sequential blasting machine on the vibration level are discussed. The vibration level by S.B.M. are decreased approximately 14.38~18.05 to compare to level of conventional blasting and cycle time per round can be saved. 2. The empirical equations of particle velocity were obtained in S,B.M. and conventional blastin. $V=K(D/W^{1/3})-n$. where the values for n and k are estimated to be 1.665 to 1.710 and 93.59 to 137 respectively. 3. The growth of cracks due to vibrations are found but the level fall to within allowable value.

  • PDF

A Study on a Laser Scanning Vibrometer Using a Magnetostrictive Resonant Device (자기 변형 공진 기구를 이용한 레이저 스캐닝 진동측정기에 관한 연구)

  • 이정화;류제길;박기환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.58-66
    • /
    • 1998
  • A low power consuming laser scanning vibrometer is studied for its development. For its optical system, a laser interferometer is constructed to use the Doppler effect. In order to reduce the driving power of the scanning system, a small displacement of the scanning system is produced, which is achieved by using a magnetostrictive actuator. A sufficient rotating angle of the scanning system is obtained by using an amplified displacement from the resonant phenomena of a second order mechanical system composed of a mass and spring. The control of the magnetostrictive actuator using a Terfenol-D is performed without using a feedback system to help reduce the power consumption. The vibration analysis is made for the sinusoidal scanning input to have the space domain information from the time domain of the velocity of a vibration object. As a partial work of development of a tow power consuming laser scanning vibrometer, in this work, a scanning system which has the above features is developed and experimentally investigated. For the purpose of the optical system calibration, the vibration measurement for one axis is presented and the future works are discussed.

  • PDF

Disturbance estimation of optical disc by closed loop output estimator (페루프 외란 검출기를 통한 광디스크 외란 측정)

  • Park, Jin-Young;Chun, Chan-Ho;Jun, Hong-Gul;Lee, Moon-Noh;Hyunseok Yang;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1166-1171
    • /
    • 2001
  • The method for output disturbance estimation is proposed. In this method, output disturbance is estimated from the closed loop system dynamics using the output and control input signals. In the closed-loop output-disturbance estimator, precise system identification is required to reduce estimation error. The realization of estimator was done by the DSP board (DSPl103), and disturbance estimation in various environments was performed: change of rotation speed, media feature and spindle motor with (or without) auto-ball balancing system (ABS). From these experiments, the disturbance characteristics of ODD under various conditions are analyzed, and the desirable servo loop configuration based these results is proposed.

  • PDF

Identification of Input Force for Reaction Wheel of Satellite by Measured Action Forceon Decelerating (감속 시의 고정부 작용력 측정을 이용한 반작용휠 계의 가진 입력 특성 규명)

  • Shin, Yun-Ho;Heo, Yong-Hwa;Oh, Shi-Hwan;Kim, Dae-Kwan;Kim, Kwang-Joon;Yong, Ki-Lyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.263-271
    • /
    • 2010
  • A reaction wheel is commonly used, as an important actuator, to control the attitude of a satellite. Operation of the reaction wheel plays a role of an excitation source to loading equipment inside the satellite. As requirements for environmental vibration to manifest the performance of precision equipment are getting more stringent, the research for analysis or reduction of unwanted action force in high frequency range when operating the reaction wheel is necessary. In this paper, the procedure to extract input forces and damping of a rotor system of reaction wheel is suggested. The analysis for measured action forces of reaction wheel is accomplished and important higher harmonics of action forces are determined. The input forces and damping of the rotor system are, then, extracted by curve-fitting and a particular solution for input force.

Performance of an Duct-type HVAC System for Conservation of Ancient Tombs (고분보존용 덕트형 공조시스템의 운전 특성)

  • Jun, Yong-Du;Lee, Kum-Bae;Park, Jin-Yang;Ko, Seok-Bo;Jun, Hee-Ho;Youn, Young-Muk
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.29-34
    • /
    • 2006
  • Although the importance of good conservation of historic sites including ancient royal tombs is well aware, still not much attention has been paid for the facilities and systems to preserve those historic sites, which includes precious artifacts as wall paints and carved works, etc. Even the level of general understanding about the environment of the underground space of tombs is not satisfactory. In Korea, researchers have recently begun addressing the importance of maintaining proper environment for underground space as of ancient tombs and are making efforts to develop suitable HVAC(heating, ventilating and air-conditioning) systems for them. In this study, an HVAC system for a tomb ($D{\times}W{\times}H=1.3m{\times}3.0m{\times}1.2m$) was installed to maintain suitable indoor conditions for conservation of tomb. The temperature and humidity inside the tomb were measured to represent the performance of the installed duct-type HVAC system. Vibration levels due to the installed an HVAC system are alive investigated experimentally. According to the measured data, the level of vibration inside the present model tomb with the duct-type unit showed significantly lower values than the case with the indoor unit inside.

  • PDF

Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation

  • Ozdemir, Mahmut Tunahan;Kobya, Veysel;Yayli, Mustafa Ozgur;Mardani-Aghabaglou, Ali
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.85-97
    • /
    • 2021
  • In this study, the effect of steel fiber utilization, boundary conditions, different beam cross-section, and length parameter are investigated on the free vibration behavior of fiber reinforced self-compacting concrete beam on elastic foundation. In the analysis of the beam model recommended by Euler-Bernoulli, a method utilizing Stokes transformations and Fourier Sine series were used. For this purpose, in addition to the control beam containing no fiber, three SCC beam elements were prepared by utilization of steel fiber as 0.6% by volume. The time-dependent fresh properties and some mechanical properties of self-compacting concrete mixtures were investigated. In the modelled beam, four different beam specimens produced with 0.6% by volume of steel fiber reinforced and pure (containing no fiber) SCC were analyzed depending on different boundary conditions, different beam cross-sections, and lengths. For this aim, the effect of elasticity of the foundation, cross-sectional dimensions, beam length, boundary conditions, and steel fiber on natural frequency and frequency parameters were investigated. As a result, it was observed that there is a noticeable effect of fiber reinforcement on the dynamic behavior of the modelled beam.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Performance-based seismic evaluation and practical retrofit techniques for buildings in China

  • Wang, Hao;Sun, Baitao;Chen, Hongfu
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.487-502
    • /
    • 2022
  • China is prone to earthquake disasters, and the higher seismic performance is required by many existing civil buildings. And seismic evaluation and retrofit are effective measures to mitigate seismic hazards. With the development of performance-based seismic design and diverse retrofit technology for buildings, advanced evaluation methods and retrofit strategies are in need. In this paper, we introduced the evolution of seismic performance objectives in China combined with performance-based seismic design. Accordingly, multi-phase evaluation methods and comprehensive seismic capacity assessment are introduced. For buildings with seismic deficiency or higher performance requirements, the retrofit technologies are categorized into three types: component strengthening, system optimization, and passive control. Both engineering property and social property for the retrofit methods are discussed. The traditional seismic retrofit methods usually are costly and disturbing, and for example in Beijing, seismic strengthening costs approx. 1000 RMB/m2 (for 160 USD/m2), for hospital building even more expensive as 5000 RMB/m2(for 790 USD/m2). So cost-efficient and little disturbance methods are promising techniques. In the end, some opinions about the retrofit strategy and schemes category are shared and wish to discuss the situation and future of seismic retrofit in China.

Combining different forms of statistical energy analysis to predict vibrations in a steel box girder comprising periodic stiffening ribs

  • Luo, Hao;Cao, Zhiyang;Zhang, Xun;Li, Cong;Kong, Derui
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.119-131
    • /
    • 2022
  • Due to the complexity of the structure and the limits of classical SEA, a combined SEA approach is employed, with angle-dependent SEA in the low- and mid-frequency ranges and advanced SEA (ASEA) considering indirect coupling in the high-frequency range. As an important component of the steel box girder, the dynamic response of an L-junction periodic ribbed plate is calculated first by the combined SEA and validated by the impact hammer test and finite element method (FEM). Results show that the indirect coupling due to the periodicity of stiffened plate is significant at high frequencies and may cause the error to reach 38.4 dB. Hence, the incident bending wave angle cannot be ignored in comparison to classical SEA. The combined SEA is then extended to investigate the vibration properties of the steel box girder. The bending wave transmission study is likewise carried out to gain further physical insight into indirect coupling. By comparison with FEM and classical SEA, this approach yields good accuracy for calculating the dynamic responses of the steel box girder made of periodic ribbed plates in a wide frequency range. Furthermore, the influences of some important parameters are discussed, and suggestions for vibration and noise control are provided.