• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.032 seconds

Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium

  • Amir, Saeed;Arshid, Ehsan;Maraghi, Zahra Khoddami
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.581-592
    • /
    • 2020
  • Magneto-rheological fluids and magneto-strictive materials are of the well-known smart materials which are used to control and reduce the vibrations of the structures. Vibration analysis of a smart annular three-layered plate is provided in this work. MR fluids are used as the core's material type and the face sheets are made from MS materials and is assumed they are fully bonded to each other. The structure is rested on visco-Pasternak foundation and also is subjected to a transverse magnetic field. The governing motion equations are derived based on CPT and employing Hamilton's principle and are solved via GDQ as a numerical method for various boundary conditions. Effect of different parameters on the results are considered and discussed in detail. One of the salient features of this work is the consideration of MR fluids as the core, MS materials as the faces, and all of them under magnetic field. The outcomes of this study may be led to design and create smart structures such as sensors, actuators and also dampers.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Evaluation of the effect of smart façade systems in reducing dynamic response of structures subjected to seismic loads

  • Samali, Bijan;Abtahi, Pouya
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.983-1000
    • /
    • 2016
  • To date the engineering community has seen facade systems as non-structural elements with high aesthetic value and a barrier between the outdoor and indoor environments. The role of facades in energy use in a building has also been recognized and the industry is also witnessing the emergence of many energy efficient facade systems. This paper will focus on using exterior skin of the double skin facade system as a dissipative movable element during earthquake excitation. The main aim of this study is to investigate the potential of the facade system to act as a damper system to reduce earthquake-induced vibration of the primary structure. Unlike traditional mass dampers, which are usually placed at the top level of structures, the movable/smart double skin facade systems are distributed throughout the entire height of building structures. The outer skin is moveable and can act as a multi tuned mass dampers (MTMDs) that move and dissipate energy during strong earthquake motions. In this paper, using a three dimensional 10-storey building structure as the example, it is shown that with optimal choice of materials for stiffness and damping of brackets connecting the two skins, a substantial portion of earthquake induced vibration energy can be dissipated which leads to avoiding expensive ductile seismic designs. It is shown that the engineering demand parameters (EDPs) for a low-rise building structures subjected to moderate to severe earthquakes can be substantially reduced by introduction of a smart designed double skin system.

Nonlinear free vibration of FG-CNT reinforced composite plates

  • Mirzaei, Mostafa;Kiani, Yaser
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.381-390
    • /
    • 2017
  • Present paper deals with the large amplitude flexural vibration of carbon nanotube reinforced composite (CNTRC) plates. Distribution of CNTs as reinforcements may be uniform or functionally graded (FG). The equivalent material properties of the composite media are obtained according to a refined rule of mixtures which contains efficiency parameters. To account for the large deformations, von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity is included into the formulation. The matrix representation of the governing equations is obtained according to the Ritz method where the basic shape functions are written in terms of the Chebyshev polynomials. Time dependency of the problem is eliminated by means of the Galerkin method and the resulting nonlinear eigenvalue problem is solved employing a direct displacement control approach. Results are obtained for completely clamped and completely simply supported plates. Results are first validated for the especial cases of FG-CNTRC and cross-ply laminated plates. Afterwards, parametric studies are given for FG-CNTRC plates with different boundary conditions. It is shown that, nonlinear frequencies are highly dependent to the volume fraction and dispersion profiles of CNTs. Furthermore, mode redistribution is observed in both simply supported and clamped FG-CNTRC plates.

Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method (자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

Experiments for the Vibration Control of Steel Frame Structure Using Toggle Brace and Lead Rubber Damper (토글가새와 납-고무 제진장치를 적용한 구조물 진동제어 실험)

  • Park, Jung-Woo;Park, Jin-Young;Lee, Wan-Ha;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.171-176
    • /
    • 2011
  • The purposes of the research were to evaluate system performance and response of building structure under external load for full scale modal-testing-tower applied toggle bracing and lead rubber damper(LRD). The dynamic properties of the structure were measured before and after installing damper under harmonic excitation using the AMD and the results were compared. The harmonic excitation condition is to increase 0.01Hz sine sweep signal from 0.49Hz to 0.63Hz. As a result of measuring resonant frequency, before installing damper is 0.55Hz and after installing damper is 0.62Hz. The experimental results after installing damper were also distinguished from simulation results and the main cause of this results is temperature dependency property of rubber material.

  • PDF

A semi-active smart tuned mass damper for drive shaft

  • Cai, Q.C.;Park, J.H.;Lee, C.H.;Park, J.L.;Yoon, D.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

Feasibility Study of Squeal Noise Reduction using Magneto-rheological Elastomer (자기유변탄성체를 이용한 스퀼 소음 저감 타당성 연구)

  • Song, HyukGeun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.274-278
    • /
    • 2020
  • This study investigates the possibility of reducing squeal noise generated at the contact point between an elastomer and glass by using the properties of a magneto-rheological elastomer (MRE) whose stiffness changes with the application of a magnetic field. Previously, squeal noise was mainly observed in the unstable section caused by the weakening of friction due to velocity. Previous studies have shown that squeal noise decreases as the stiffness increases. Accordingly, this study is conducted to control the unstable area of the friction curve and to reduce the noise by inducing the stiffness change of the MRE by applying a magnetic field. The friction, vibration, and noise characteristics are measured using a reciprocating friction tester. The frequency ranges of vibration and noise measured with the accelerometer and sound sensor show similar results. When a magnetic field is applied to the MRE, there is significantly lower noise compared with the case without the application of the magnetic field. The average coefficient of friction decreases with the application of the magnetic field. The maximum coefficient of friction increases rapidly at the turning point and decreases when the magnetic field is applied. This shows that the mechanical properties of the MRE change due to the magnetic field, and the noise and friction coefficient also decrease.

Study on an Intermediate Compound Preparation for a HTGR Nuclear Fuel (고온가스로용 핵연료 중간화합물 제조에 대한 연구)

  • Kim, Yeon-Ku;Suhr, Dong-Soo;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.725-733
    • /
    • 2008
  • In this study the preparation method of the spherical ADU droplets, intermediate compound of a HTGR nuclear fuel, was detailed-reviewed and then, the characteristics on an ageing and a washing steps among the wet process and the thermal treatment process on the died-ADU${\rightarrow}UO_3$ conversion with the high temperature furnaces were studied. The key parameters for spherical droplets forming are a precise control of feed rate and a suitable viscosity value selection of a broth solution. Also, a harmony of vibrating frequency and amplitude of a vibration dropping system are important factor. In our case, an uranium concentration is $0.5{\sim}0.7mol/l$, viscosity is $50{\sim}80$ centi-Poise, vibration frequency is about 100Hz. In thermal treatment for no crack spherical $UO_3$ particle, the heating rate in the calcination must be operated below $2^{\circ}C$/min, in air atmosphere.

A study on Fairing System for Traveling Noise Reduction in Urban Subway (도시철도 운행소음 저감용 훼어링시스템 연구)

  • Choi, Sang-Chun;Jang, Won-Rak;Ho, Kyoung-Chan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.659-666
    • /
    • 2009
  • As the density and height of the buildings nearby subway lines get higher, the unprecedented residents' appeals for noise are on the rise. Furthermore, in accordance with the revision of enforcement regulations on the Noise and Vibration Control Act, the night time noise standards have been reinforced by 5dB effective on January 1st 2010 and the appropriate measures shall be taken accordingly. For the settlement of the public grievances against noise and vibration generated on tracks in at-grade and elevated section, the installation of continuously-welded-rail, rail lubrication system, improved fastening system and higher noise barrier is currently executed. Nevertheless, the noise and vibration levels in some areas are still exceeding the limits required in the regulation. Among the measures, an installation of higher noise barrier or noise tunnel seems to be the most effective way; however, it has limitations owing to the structural stability of existing elevated structures. The paper in consideration of the local conditions and foreign practices discusses the installation of fairing system under the train body as an noise insulation panel in order to reduce the rolling noise and under-carriage noise. Based on the result of this study, a performance verification test during actual train operation is in progress for further study.

  • PDF